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Every flight, no matter what type (there are other types
of flights with no minimum requirement), will count toward a
pilot's total flight requirement. This cost is constant over

all flights j for a given pilot i,

To satisfy the type requirements, flight j must be the
same type as the requirement in question. The second cost

depends on j, as well as i. Let
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c! = the cost (number of flights flown/total

flight requirement) associated with total
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flights for pilot i,

>

and
c?; = the costs (number of type j flfghts

flown/type j flight requirements) associated

Anan et
B

with specific types of flights.

We will associate c] with arcs s-i since they apply to

ML are. 4
i

all flights pilot i flies. Similarly, we associate c?; with
arcs i-j since they depend on the type of flight j is. We
can weight the components to reflect the scheduler's view of
which component is more important relative to the others

(i.e. we may want to emphasize the completion of air
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refueling requirements over air combat training missions).

The objective function f(x) can now be written as

39
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(BIP) 21 X, + Xgi/ = Uy~ 11' all i' (3.23)

Yo xgy. =Lyby- 21, (3.24)
Z¥ a;; Xi3 = Uy all i (3.25)
Ly Fiuy Xy, <1 kK =1,..., N, all i (3.26)

Xij, %X;;., Xg;- 2 0, integer. (3.27)

3.4 Example Formulation
Let us illustrate the formulation with a simple example.
Consider the hypothetical flight schedule shown in figure

3-5, with six formations, requiring eight pilot assignments.

In the example we have four pilots available. Suppose that
we require each of the pilots to fly at least one, but no
;; more than three flights. Suppose too, that pilots 2, 3, and
F] 4 are unavailable for flights 2, 6, and 3 respectively. The
resulting node adjacency matrix {a:;} and time overlap
Eq constraint matrix {f,.;} (constraints (3.26)) are shown in
figure 3-6. Note that this matrix is strictly showing the
conflicts between flights, We will add the restriction that
| a pilot i be available and qualified (i.e. a;;= 1) at a

later time.
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Example Problem Schedule

42

A aa

o A0 AN, S Ry
Day 1 Flight 1 Flight 2 Flight 3
Brief time 0515 0930 1400
Takeoff time 0715 1130 1600
Type flight Air Combat  DART . Night Inter

2 pilots 1 pilot 1 pilot

required required required
Land time 0830 1245 1715
End debrief time 1015 1430 19%0
Day 2 Flight 4 Flight 5 Flight 6
Brief time 0500 0930 1400
Takeoff time 0700 1130 1600
Type flight Ar Refuel Afir Combat Night Inter
- 2 pilots 1 pilnt 1 pilot

required required required
Land time 0815 1245 1715
End debrief time 1000 1430 1900

Figure 3-5
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Completion percentages
(in decimal form [i.e. 1 = 100Z21})

note: a large weight deemphasizes the type
of flight, here we weight all types evenly

Flight

1|1 2 3 4 5 6
ACTT| DART| NINT| AARD | ACTT | NINT

=

1 121311 ? 2 1

Pilot

A\ Example cost matrix

Figure 3-7
Example Problem Costs
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PILOT SCHEDULING IN A
FIGHTER SQUADRON
by
WILLIAM HENRY ROEGE

Submitted to the Sloan School of Management
on January 13, 1983 in partial fulfillment of
the requirements for the Degree of Master of Science
in Operatious Research

ABSTRACT

Air Force fighter pilots, in order to remain combat
qualified, must complete flight training every 6 months as
specified by Tactical Air Command Manual (TACM) 51-50.
Presently, scheduling is manual. As a result, pilots do not
receive an optimum flow of training and often do not complete
their required training.

We propose a computer model, an integer program, based
on branch and bound techniques to solve the problem on a
micro-computer. The model includes complicating constraints
such as crew rest restrictions and absen8es frqm duty and
ensures that each pilot receives at least a minimum, or no
more than a maximum, number of flights per week. :

Our method involves relaxing some &f the constraints
(e.g. crew rest constraints) to obtain a network flow problem.
We tighten the relaxation by solving small set covering
problems derived from the relaxed constraints.

The model was developed and tested on an IBM personal
computer.

Thesis Supervisor: Prof. Thomas L. Magnanti

Title: Professor of Operations Research
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To help understand f,; consider row 1 in ({f,;}. The

first three 1's mean that flight 1 conflicts with flights 2

and 3. Row 3 shows that flights 3 and 4 conflict (because of
overnight crew rest), and row 4 shows that flights 4, 5, and

6 conflict.
To develop the cost matrix {c,;} we assign

weights, as

shown 1in figure 3-7, to the cost components, and multiply
them by the hypothetical completion percentages (also in
figure 3-7). The resulting cost matrix is the last matrix

depicted in figure 3-7.

As an example, consider pilot 1 and flight 2. The cost

Cia, is the weight. for total flights (1); times the

completion percentage of total flights for pilet 1 (100 per

cent = 1), plus the weight for DART missions (1), times the
completion percentage. (2), which is 141 + 1.2 = 3, So
Cy,= 3, as shown in figure 3-7.

Figure 3-8 shows our sample problem, expanded 1in the

form of (BIP). The first 6 constraints are the node balance

constraints for the flights. The second 4 constraints are

The next 5 constraints are for s and the
{fc}

are now adjusted for the individual pilots.

for the 1i' nodes.

pilots. The last 16 constraints are from the matrix,

but We will use

a portion of this problem to illustrate the solution
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CHAPTER 4

N REVIEW OF THE LITERATURE

Scheduling has many applications. One major

application, job shop and machine job scheduling problems



Arabeyre, Fearnley, Steiger, and Teather (1) survey the
early attempts to solve the airline pilot scheduling problem.
Most researchers separated the problem into two parts, (1)
assigning flight 1legs (one takeoff to one 1landing) to
rotations (a round trip of one to three days), and (2)
assigning pilots to the rotations. The first problem
attempted to minimize "dollar" costs, such as costs of
overnight lodging. The second problem aimed to distribute

pilot monthly flight time evenly.

Usuzlly researchers and practitioners considered tﬁe
first problem to be the most difficult since it had to deal
with complicating constraints due to union rules, FAA
regulations, and company policies. Etcheberry'(ll) developed
an 1implicit enumeration algorithm, using a branch and bound
framework with Lagrangian relaxation, to sclve large set

covering problems such as this one.

Rubin (36) solved the problem by reducing the number of
constraints as much as possible before solving it. He would
then coﬁsidet subsets of the constraint matrix columns, find
the best solution over that subset, and repeat the process

until obtaining a satisfactory solution.

Marsten (26) developed an algorithm to solve the related

set partitioning problem, This algorithm ordered the

49
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constraint matrix lexicographically before starting the
optimization. The algorithm then takes advantage of the
constraint structure to help fathom candidate problems
guickly.

Garfinkel and Nemhauser (15) developed a
set-partitioning procedure that reduces the problem size by
eliminating row and column vectors before applying their
algorithm, The algorithm then orders the data so the rows
with the least number of non-zero entries appear first, and
the columns with the lowest costs are on the left. They ther
use an implicit enumeration algorithm that takes advantage of
this structure to build possible solutions. Pierce (33)
independently developed a similar algorithm,

Nicoletti (32) viewed the second problem (assignment of
pilots to rotations) as a network assignment problem and

successfully used the out-of-kilter method to find solutions.

The fighter pilot scheduling problem differs from the
airline scheduling problem 1in that all the fighter flights
originate and terminate at the same base. This eliminates
the need to develop rotations, although we still must deal
with crew rest and other regulations, just as the airlines

must.,

50
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A possible formulation of the fighter pilot scheduling

problem is in the form of "k-duty period" scheduling problem.

This problem deals with schedules consisting of k independent .

contiguous scheduling periods; for example, a schedule might
assign a person to work k four hour shifts each separated by

two hour breaks.

Shepardson (40) deals with this problem, The general
idea is to start with a proposed (yet feasible) subset of

schedules as the columns of a constraint matrix, with its

-rows- being the jobs to be filled. - He then separztes tha

columns into new columns each with only one contiguous
scheduling period. For example,; he would separate a 2-duty
schedule containing two 4-hour shifts into two  columns each
representing a single 4-hour shift. This solution strategy
is attractive because problems in which all schedules have a
single contiguous duty can be solved as network flow

problems.

He then adds extra side equations to ensure that if a
new column 1is in the solution, then all the new columns
associated with its column in the original problem
formulation, are also in the solution. 1In our example, if
one of the two columns with the 4~hour shifts is in the
solution, then they both must be in the solution. He then

dualizes these side equations and uses Lagrangian relaxation

51
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The recent development of the Rapid Deployment Force and
the events in the Falkland 1Islands (22) underscore the
necessity for our combaf forces to be ready at a moment's
notice, To do its part, the Tactical Air Command (TAC) must
be ready to fly anywhere at a day's notice. To achieve this
capability, TAC must maintain a high level of training for
all of its pilots. The Air Force has many levels of comman2
starting with the President, Department of Defense, and
Headguarters Air Force. Although it has four major commands
with tactical fighters, we will restrict our atkention to TAC
which commands the fighter units in the continental United
States. Under TAC are a number of flying Wings. Each Wing
consists of three squadrons of 18 to 30 aircraft. A Wing
will normally be assignd2 to one base, and usually is the
only Wing at the base. The squadron is the smallest

administrative unit.

The sguadron's job is to be combat ready at all times,
but strategic decisions on resource allocation are all made
well above the squadrcn and Wing levels. For example, the
higher authorities determine the number of aircraft in each

squadron, the number of pilots assigned to the sguadron, and

LIPSLALEFLAPN WP L ST SO LA SR SO, INU S SPUELIR SR RN JS. T NS S SR S S ., S PSP SR, U SIS S S AT RN

PP QOO B e B R L T R E AN A S O TP A M T3 S A o RN 1 2 G GRS SN S Y i i ST .
CHAPTER 1
INTRODUCTION




methods to solve the problem.

4.2 Lagrangian Relaxation

In problems with many complicating constraints,
Lagrangian relaxation techniques that exploit underlying
problem structure (like the single-duty problem that can be
solved as a network flow problem) have so far yielded very
good results for a wide variety of applications. Fisher
(12), Magnarti (25), and Shapiro (39! all give good surveys
of Lagrangian relaxation methods, and mention a number of

application areas.

Lagrangian relaxation methods attempt to. simplify the
problem by dualizing some constraints, multiplying them by
Lagrange multipliers, and adding them to the objective
function, Given a set of multipliers, the relatively easy
relaxed problem is solved. Then given the new solution to
the relaxed problem, we splve for new multipliers. (In
section 5.2 we describe the multiplier selection procedure in
more detail.) We can embed this method into a branch and
bound framework to systematically exhaust all possibilities,
and find the optimal solution. (See (7) and (12) for an

explanation of branch and bound methodology.)
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the amount of gasoline allocated to the squadron.

TAC also has training guidelines that set the

) semi-annual training requirements for all pilots. These
guidelines are documented in TAC Manual 51-50 (41). TACM

51-50 1is written to ensure that all pilots in every squadron

are obtaining at least a minimum amount of proper training.

The task for the squadron, then, 1is to allocate 1its
given resources to ensure that each pilot receives his
required ' training. This may not seem difficult to
accomplish, but at the present time with manual scheduling,
and with a wide range in training needs for thg pilots, many
pilots either do not complete their semi-annual requirements,
or barely finish in the last week. This invariably leads to

"crisis management".

Our proposal is to build a computer model to do much of
the routine scheduling, so that schedulers can devote more
time to specialized problems, The program will use TACM
51-50 requirements to form an objective function. It will
define costs in terms of a percentage of a requirement
completed, and will try to schedule pilots who are behind
schedule (relative to others) more often than the pilots who
are ahead. We will focus on an F-15 air-to-air squadron as a

specific application.




Several methods have been proposed to solve for the
Lagrange multipliers. The most popular method is subgradient
optimization. The method starts with a proposed solution for
the multipliers, then uses a subgradient of that solution to
move to a better solution. Héld, Wolfe, and Crowder (18)
give a comprehensive explanation and evaluation of
subgradient optimization. Other methods include generalized
linear programming (25), the BOXSTEP method (19), dual ascent
(10), and so called mul.iplier adjustment methods (10,13).
None of these methods has performed as well as subgradient
optimization so far on a wide variety of problems, ¢<hough
multiplier adjustment methods have proved to be successful on
facility location problems (Erlenkotter [10]) and generalized

assignment problems (13).

Ross and Soland (35) proposed a heuristic for finding
multipliers when solving the generalized assignment problem.
They relax the supply node bounds and solve the relaxed
assignment problem. Their method then assigns multipliers
based on the minimum penalty (increase in cost) incurred to
make the relaxed solution feasible. For each supply node
whose supply bound is exceeded, they find a new assignment
that makes that node supply feasible with minimal cost
increase. The increase in cost for that node 1is its new
multiplier. These multiplier problems are in the form of

knapsack problems (i.e. integer programs with only one
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Chapter 2 gives more detail of the training

requirements, and the scheduling process. It also defines

the goals, costs, and constraints that affect this problem.

Chapter 3 develops the mathematical model for the flying

portion of the schedule as an assignment problem.

Chapter 4 reviews the literature related to our

scheduling problem.

Chapter 5 discusses soluticn tectnigues for the prcblem,
and illustrates our procedure with a small example.
Chapter 6 describes the computer implementation issues,

and the computational results, ‘

We have developed a branch and bound algorithm, based on
an algorithm proposed by Ross and Soland (35), which solves
the scheduling problem we propose. We were successful in

coding the algorithm onto an I1BM personal computer.




..........

constraint). Until muitiplier adjustment methods were
developed, their method seemed to be faster than any other
for solving generalized assignment problems, their advantage
being the ability to quickly solve the small knapsack
problems to find the multipliers. We give a more detailed

explanation of this procedure in section 5.3.

Fisher, Jaikumar, and Van Wassenhove (13) have developed
a new multiplier adjustment method for the generalized
assignment problem, which seems to outperform the Ross and
Soland algcrithm. They start with the Ross and Soland
multipliers, and adjust them one by one to eventially obtain
a feasible solution to the original problem. Each adjustment
ensures that the original problem is closer to éfeasibility,
and eventually the method will yield a feasible solution.
Even though it takes much longer to find the multipliers, the
method decreases the number of problems it must solve in the
branch and bound framework, and therefore runs in less time.

We will discuss this method further in section 5.3.

Chapter 5 will apply the technigues discussed here to

the fighter pilot scheduling problem,
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CHAPTER 2

)

THE FIGHTER SQUADRON

This chapter focuses on the background necessary to
understand the problem, including the training required in

TACM 51-50 and the present scheduling system. The second

section defines the goals, objectives, costs, benefits, and
constraints that relate to the problem, and that underscore
the mathematical model that we shall study.

2.1 rraining

2.1.1 Types of Training

The squadron administers two types of training. The

ik A A B SRIRLIRT W o KA Y o T et Al R At A

first 1is wupgrade training and the second is continuation
training. Upgrade training is conducted according to a very

strict and controlled syllabus, and applies to pilots

becoming initially combat qualified (called Mission Ready, or
MR). It also applies to those who are training to become
flight 1leads and instructors. Continuation training, on the

other hand, entails more flexible requ‘rements that must be

kel S

accomplished every six months (January to June, and July to
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CHAPTER 5

SOLUTION PROCEDURES

This chapter will discuss solution methods applicable to
the fighter pilot scheduling problem. We will discuss the
general problem structure, Lagrangian relaxation solution
techniques, the technique developed by Ross and Soland, and
methods for solving the unconstrained assignment problem and

set covering problems.

5.1 Problem Structure

As we noted in chapter 3, (BIP) 1is basically a

transportation problem with complicating constraints

Lol a8

T 'T i:, Li_," T

representing time overlap and crew rest restrictions, The
problem has the classical primal block angular structure (7)
shown 1n figure 5-1a. The common constraints represent the
transportation problem, and the overlap constraints form

¢ separable subproblems.

Ty T T T Ty Tt

b The time constraints also have a special structure.

P

Figure 5-1b shows an enlargement of the shaded block in

figure 5-1a. All non zero entries lie between the diagonal
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December, called halves). All mission ready pilots

participate in this training.

. Normally the squadron closely monitors upgrade training
and assigns students and instructors to specific flights that
meet their needs for a particular mission. Therefore,
instructor and student scheduling for wupgrade training is
essentially fixed, and we concentrate on scheduling only

continuation training.

2.1.2 Training Requirements

As mentioned before, TACM 51-50 is the training bible
for the squadron, .There are three general types of
requirements: number of (1) total flights, (2) special types
of flights, and (3) specific events to accomplish while
flying. We need only concern ourselves with the first two

categories since the pilots should be able to perform all

their required events as long as we schedule them for their
required flights., Appendix A describes each type of flight

and its semi-annual requirement.

‘.v

e A
i i

In addition to flying, the pilots must complete 12 hours

of simulator training per half. The squadron must alsc man

L4 NOAD

other flying related duties. These include Supervisor of

v

it 08- + DR IPNANOR
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Flying (SOF), Runway Supervisory Officer (RSO), and Range
Training Officer (RTO). Appendix B briefly explains these

duties.

2.1.3 Pilot Qualifications

Flying training, as well as combat, 1is conducted in
flights of 2 to 4 aircraft. Each position in the flight
requires a minimum qualification. All pilots fit into one of
these four qualificatio. categories and are assigned slots in
the flight accordingly. These categories are:

1. 1Instructor pilots (IP)- the most expefienced pilots,
whose job it is to teach all upgrade training. They
also can fly any other position available.

2. Flight leads (FL)- are gqualified to lead any flight.
They are responsible for continuation training in
their flight. They may also fly as wingmen.

3. Wingmen (WG)- are fully combat qualified, but must

fly with a flight lead when there is more than one

aircraft in a flight.
4. Mission Qualification Trainees (MQT)- are not combat

qualified, and may only fly with instructors.

Figure 2-1 shows some normal formations in the air of 2 and 4

12
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line and the staircase within the matrix. The shaded "bumps”
represent the crew rest constraints that 1link one day's
schedule to the next. If the overnight crew rest constraints
weren't present, the subproblems would separate further into
daily subproblems. For example, figure 5-1c shows the time
constraints for one pilot in the example problem developed in
section 5,3. The arrow shows the "bump" resulting from the
overnight crew rest constraint. If flights 3 and 4 didn't
conflict, then the constraints for day 1 and day 2 would be

separable.

5.2 Lagrangian Relaxation

We could conceivably attempt to use general purpose
integer programming algorithms to solve this problem, but
because of the complexity of the time constraints, these
methods probably would not be very efficient. This brute
force approach does not take advantage of the network
structure in the common constraints, which we can exploit to
solve the problem much more efficiently. By using a
Lagrangian relaxation algorithm, we can take advantage of the

network structure and decrease our solution times.

Fisher (12), Magnanti (25), and Shapiro (39) give a good

description of the Lagrangian technique and give many
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ship flights (the triangles represent aircraft). It also
shows we must pair a flight lead or instructor with every
wingman. Continuation training involves only flight leads
and wingmen, so we only concern ourselves with these two

catagories in our study.

2.1.4 Continuity and Crew Rest

Before moving on to the scheduling system, we briefly
explain the concepts of continuity ard craew rest. Ccntinuity
is importarnt because a pilot will become rusty, or at least
n not fly at his best, with as 1little as one week without

- flying. Therefore the squadron will want all available

pilots to fly some minimum number of flights each week,

depending upon how many flights are available.

"Crew rest"” is designed to avoid pilot fatigue. Crew
rest has two components. The first component keeps the duty
day from being too long. The duty day is measured from the
start of the pilot's first duty (flight brief time, or start
of a SOF or RSO tour of duty) to the end of his last flying
duty (flight 1landing time, or end of a SOF or RSO tour of

duty). The duty day can be no longer than 12 hours.

The second component of the crew rest 1is designed to

14
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citations to applications of this methodology. We will give

a general overview here as it relates to the fighter pilot
problem.
Lagrangian relaxation is used to provide bounds in a
branch and bound algorithm by dualizing some of the
; constraints. Typically, this procedure is used by
} constructing a Lagrangian problem that is much easier to
E solve than the original problem.
é In our case we can dualize the node balance constraints,
A associating Lagrange multipliers v; with the sink node
eguations, and multipliers w; with the supply node eguations,

giving the "Lagrangian relaxation" problem

Z(V,W) = min Zi Zj(cijx”) +ZjVj(bj"Ziainij) +

Z"w-l (U,- - Zja”x”) (5.1)
subject to

Zj fiij'ij 51 k=1,o..p N, all i (5'2)

X;; integer. (5.3)

We can rewrite the objective function as
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ensure the pilots obtain enough sleep and time to relax. It
is the time between the end of the 1last duty (end of the
flight debrief or end of a SOF or RSO tour) one day until the
start of the first duty the next. This component must be at

least 12 hours,

2.2 Scheduling

The squadron schedulers are a group of three to five
nilots. They cere responsible for developirg the schedule,
for deciding the timing and types of flights, and for
assigning pilots to those flights., Before they can assign
pilots there must be a mission schedule, such Qs the one in
figure 2-2. Each blank, in figure 2-2 represents a slot that
needs to be filled by a pilot who is qualified to fill that
slot. The flight lead briefs the flight two hours prior to
takeoff, and debriefs the flight after it lands (approximate

times are indicated).

The mission schedule is heavily influenced by‘ factors
exogeneous to the squadron including maintenance's ability to
provide aircraft, FAA airspace availability, and availability
of other aircraft such as air refueling tankers. The
schedulers juggle these factors to design a schedule that

shows the mission times, airspace, and mission type.
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There are a few methods available for solving for v or w
in maximizing Z(v,w). These include subgradient optimization
(18), generalized linear programming (for the LP dual problem
of maximizing Z(v,w)) (25), and the multiplier adjustment
method (10,13). Subgradient optimization has been the
dominant procedure used so far, but the new multiplier
adjustment method used by Erlenkotter (10) and by Fisher, et

al. (13) seems to work much faster in some applications.

The multiplier adjustment method starts with any values
of the Lagrange multipliers v and w, which might give a
fairly loose lower bound on Z. Then by adjusting each

multiplier one by one, we obtain a feasible solution with a

much sharper lower bound. This sharper lower bound tends to
! fathom candidate problems faster than the Ross and Soland
method, which we discuss next. See the references for

explanations of the procedures discussed so tar.

vy -
B ‘T
. . .l

vy

In the next section we discuss a branch and bound

method, related to Lagrangian relaxation, developed by Ross

YT

and Soland,

5.3 Branch and Bound Algorithm

To solve (BIP), we will use a relaxation algorithm
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Times

Brief 0430 0800 1330
Takeoff 0630 1000 1530
Type flight ACTT MQT/ACIT ACTT

FL IP FL

wG MQT wG

FL FL FL

WG wG wG
Debrief end 0930 1300 1830 (Land 1650)
Brief 0500 0830 1430
Takeoff 0700 1030 1630
Type flight MQT/INT DACT NINT

IP FL FL ____

M wG wG

FL FL,

WG

Debrief end 1000 1330 1930 (Land 1750)
Brief 0510 0900
Takeoff 0710 1100
Type flight ACTT DACT

FL FL

WG WG

w I
Debrief end 1010 - 1400

Figure 2-2

Typical Day's Schedule
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adapted from Ross and Soland (35). Their algorithm is
designed to solve the generalized assignment problem. Our
problem structure is such that we can use a slightly modified

version of the the algorithm.

5.3.1 Branch and Bound--General

Before discussing the specific aspects of the Ross and
Soland method, we review the general principles of branch and
bound methods. The general idea is to implicitly enumerate
all possible solutions to a problem (such as (BIP)) by
cutting the problem in half at each branching step, and then

finding the optimal feasible solution for each half,

For instance, we solve a relaxed prohlem, such as (NET),
and find the resulting x” to be infeasible to (BIP). We
select a variable, Xgranenr tO branch on, and split all
possible solutions into 2 sets. One set will include all
possibilities where Xgrancn = 1, and the other set will

include all possibilities where Xpranen = 0.

We then solve (NET) agein with the stipulation that
Xoranch = 1. I1f the resulting solution is feasible to (BIP)

then we know we have the best solution for the Xppranen =1

branch, and we can focus attention on the solutions -where

63
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?; We then go ‘to (NET) again and solve it when we set
- Xpranch = 0. Suppose the new solution is not feasible to
(BIP). Then we can repeat the branching process on another
separation variable. We still 1include the restriction of

Xoranch = 0 along with any new restrictions.

If during this process, any solution to the relaxed

problem has an objective value greater than the value of the
best feasible solution found so far, we can stop looking for
the optimal solution on that the search on a branch. This

process of ending branch is called fathoming.

To find the optimum solution to (BIP), we use the branch
and bound method wuntil we have fathomed all possible
branches. The lowest cost, feasible solution will then be

the optimal solution to (BIP).

5.3.2 Ross and Soland Method

This algorithm utilizes a branch and bound framework
that first relaxes the time overlap constraints and then
solves the network constraints to obtain a candidate solution

x"., It then forms small integer problems from the violated

time constraints, and solves them to find lower bounds and
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The pilot schedule is done one week at a time,
Scheduling for a 1longer period would be fruitless, as the
schedule is almost never completed exactly as planned.
Various factors precipitate change. These include weather
cancellations, maintenance problems, pilot 1illnesses, and
unexpected pilot unavailabilities. The daily schedule often
differs greatly from the weekly schedule because of these
changes. The weekly schedule serves as a basis for the daily
schedules and 1lets pilots know what to expect for the week.
1f there are no aircraft cancellations or other problems,

then fhe daily and weekly schedules should match.

One of the problems with the manual scheduling system is
that with 30 to 40 pilots, each of whom have different
requirements, it is very difficult to keep track of everyone.
TAC has used a system called TAFTRAMS to monitor the pilots'
status, and give schedulers the information they need for

assigning pilots to flights.

TAFTRAMS required punch cards to be sent to ancother
building to be entered into a computer. Twice a week a
computer generated printout was sent to the schedulers. Thus
information was normally 1 to 3 days late. TAFTRAMS would
make a sguadron-based computer scheduling program difficult

to implement.
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separation variables to use in the branching process. We use
the separation variables to form candidate problems in which
we divide the possibilities in half by adding the constraint
that the separation variable must be 1 in our next solution.
If the next solution to (NET) (or (BIP)) is feasible, then we
try the other half of the possibilities (i.e. solve (NET)
when the separation variable 1is fixed at 0). We first
discuss the procedure, then 1illustrate it with the small

example problem formulated in chapter 3.
The relaxed problem is
ZR = min Z'i ZJ C,-jx,-j (5.6)

subject to

2. a,,x,; = b, all j (5.7)
L, Xes. =L,b,- 2,1, (5.8)

(NET) 21 x‘j + xsj: = u; - li (5.9)

3

3 a”X,-, = U all i (5.10)

s

Xi5, X435, Xgj integer (5.11)

which is a min-cost flow transportation problem. Later in
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The new system is called AFORMS., It will use a micro

computer in the squadron to store TACM 51-50 information, and
allow the schedulers access to current information. AFORMS
allows us to build a program that uses current information in

the squadron computer.

The current manual schedulihg system has other problems
besides the lack of timely information. There is no central
place to keep information concerning when pilots have
meetings, appointments, or are on vacation. Sometimes this
results in someone being scheduled t¢ fly when he is not
available. Crew rest violations occur mainly when the
schedule is changed at the last minute, without checking the

new pilot's crew rest status.

2.3 The Model

Now that we have an idea of the scheduling situvation in
the squadron, let us look at how we might go about building a
model. First, before considering the mathematical
development in chapter 3, let us describe the goals of the

model, the relevant cost structures, and the constraints.

2.3.1 Goals of the Model

18
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the chapter we describe methods for solving (NET).

Let x* denote an optimum flow vector for (NET) and let
Zp denote its optimum objective value. If x” is feasible for
the time constraints, then it is optimal for the original

pilot scheduling problem (12).

I1f the solution x* to (NET) is infeasible to (BIP), we
can then form auxilary problems (subproblems) with the time
constraints. We will have one subproblem for each pilot i.
The objective of these subproblems is to find the minimum
cost reallocation of flights from pilot i to other pilots, so
that pilot 1i's schedule 1is feasible. By solving these
subproblems for all i, we will find a lower bound for 2 in
(BIP). This lower bound will help fathom the current
candidate problem, and help find a separation vari-ble (to

use for the next branch).

Let CTq; be the reduced cost of the pairing of pilot g to
flight j in x". Let T,; be the next larger reduced cost for
flight j, and define

P; = {Cry - Cq;},
then p, represents the minimum penalty for reassigning flight
j with respect to the solution x*. Also let
Jy = {j 3 x7; = 1},

and
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In general, we want to maintain the wvirtues of the
present system, while using the computer to help alleviate
some of the problems now encountered. Therefore to
accomplish this goal, the model must:

1. Ensure that TACM 51-50 requirements are met and are

being allocated evenly.

2. Ensure that every available pilot flies the minimum

number of flights every week.

3. Find a solution to the weekly (and daily)

schedules with no crew rest violations or
unaveilable pilots assigned to duties.

4. Solve the problem in less time than the

present system.

5. Be able to run the program on a micro'cgmputer.

(

In addition, the model should provide the means to
schedule the flying related duties, and be able to display

who is available in case last minute problems arise.

2.3.2 Costs of the Problem

The costs in this problem cannot be measured directly in
dollars and cents, although in the long run better training
will result in a more cost effective force. The costs here

are training costs associated with TACM 51-50 requirements.
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Yi; 1 if we reassign flight j from pilot i
to pilot r
0 otherwise.

Consider the problem

Z,- = min Zje\JL pJ Y1j (5.12)

subject to

Yi; = 0or 1, (5.14)

where

dik = ZJ £fiu; X35 — 1.
The value of d;, is the minimum number of flights which must
be reassigned to satisfy constraint k. - The -solution, y~,
this problem represents decisions to as to whether to let
pilot i keep flight j (i.e. y7;= 0), or to reassing flight j
to pilot r (i.e. yjs=1).

If yi; = 0, then p; is large, and we would want to keep
this pairing as it is. On the other hand, if yi; = 1 and p;

is small, we will not be hurt much by reassigning flight j to

pilot r.
When we solve (SIP,) the resulting 2z, represents the
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minimum increase in cost by changing x° to make pilot i's

schedule feasible. The overall minimum penalty is Xin, SO

a lower bound, LB, on (BIP) is
ﬁ . LB = ZR + Zizi.
We can use LB to fathom nodes in the branch and bound

procedure (35).

As in Ross and Soland, we can use the solutions yj; to
suggest a new solution that tends to be feasible. To form

. the new test solution, we start with the solution x* from

- . _

o (NET). We then change the x corresponding to yi; = 1 to
' zero, and set the corresponding variables variables x.; to
ri one. If this new solution is feasible its objective value is

& given by LB. The solution is also optimal for the candidate

problem we are investigating, since we found the minimum

increase in cost when solving the subproblems.

If the new solution is still infeasible, we need to find
a separation variable (x,,). A logical choice is one of the
variables with y7; = 0. We choose to branch on the x;; with
the maximum p; for all i. When we branch we will set x;; =1

as the first candidate problem, and x,; = 0 as the second.

5.3.3 Algorithm Summary
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Here the squadron restrictions will set only minimum and
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maximum number of flights per week. There are, of course,

many possibilities for other constraints.
Chapter 3 will now use these ideas to develop a

mathematical model to be used to solve the pilot scheduling

problem.
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To summarize the procedure, figure 5-2 gives the general
algorithm, in flow chart form, that we will use to solve the

fighter pilot scheduling problem. The following 1is the

written form of the algorithm,

Step 0: 1Initialize. Read in the data and let LB" =
infinity,
Step 1: Solve (NET)-- using a min-cost network flow

algorithm to obtain x* and Z,.

Step 2: Test the solution, Test to see if x* |is

feasible with respect to the time constraints. 1If it is

feasible or if Zp > LB" (the best bound so far), then go to

step 6. Otherwise go to step 3.

Step 3: Solve SIP;, tfor all 1. Use an integer

programming algorithm to find y* and z,, and therefore LB for

the current candidate problem,.

Step 4: Form a new problem--by changing the x wvariables

where y7; = 1 so that x,;, = 0 and x., =1 (r as

defined

previously). If this new problem is feasible go to step 6,

otherwise go to step 5.

Step 5: Select the separation wvariable. From the
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CHAPTER 3

PROBLEM FORMULATION

The exact formulation of this problem depends on how we
wish to solve it. This chapter formulates the problem as an
assignment problem, assigning pilot to duties at a specified
cost, with additional constraints modeling crew rest
requirements and preventing a pilot from being scheduled for

twvo duties at once.

The mathematical programming portion of the model will
deal only with scheduling flights. Most of the jobs are
flights, and by simplifying the problem in this manner we

keep it from becoming too ccmplicated for small computers.

- The computer will still aid in manual scheduling of the other

v
e
=74
-
e
-
-,
o

duties not dealt with by the mathematical programming

routine,

After we find a solution to the flying problem, the
computer will display who is available for the other duties.
The scheduler can then select someone to fill the duty. 1f
there is no one available for a duty, the scheduler can
assign someone, and then resolve the flight problem with that

pilot now unavailable during his assigned duty.
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variables where yj; = 0 select the one with the maximum p;.

Set x;5 = 1 and go to step 1.

Step 6: Test for optimality. If LB < LB" then the
current solution becomes the new incumbent solution, and let

LB* = LB, Go to step 7.

Step 7: Select the next candidate problem. Let the
last separation variable (x;;) egual 0, and go to step 1. 1If

there are no more candidate problems, terminate.

This method can be interpreted as Lagrangian relaxation,
as the optimal shadow prices, v* and w", from (NET) which
determine the reduced costs, c;;, can be' viewed as the

Lagrange multipliers.

5.3.4 Branch and Bound--Example

We will 1illustrate the procedure with a simplified

example. We consider the example posed in chapter 3, except

to help simplify the discussion, we will only use the first
four flights (requiring 6 pilots [figure 5-3al). We assume
we have four pilots available, and can model the situation by
the network in figure 5-3b, Each pilot must fly at least

once, but no more than three times., Figure 5-3c specifies
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1 if pilot i is assigned flight j

0 otherwvise,

the total number of flights assigned
to pilot i (i.e. the flow from the

super source, S, to i in the network),

and let

u; and 1; denote the upper and lower bounds on the

number of flights per week for pilot i to fly.

Let us also define

gi; = 1 if pilot i is gualified for flight j
0 otherwise,
and '
Q; = 1 if pilot i is available for flight j

0 otherwise.

We also let

aiy = gy35°Qy; so that |

o
-
"

1 if arc i-j is feasible

0 otherwise,

Until we define the cost function later in the chapter, we

N, A N B h A8k LSRR AR hdbehdiNieli
b B ’]d. PR II,.', NN

will assume a general cost function, f(x).
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Day 1 Flight 1 Flight 2 Flight 3
Brief time 0515 0930 1400
Takeoff time 0715 1130 1600
Type flight Air Combat DART Night Inter

2 pilots 1 pilot 1 pilot

required required required
Land time 0830 1245 1715
End debrief time 1015 1430 1900

" pay 2 Flight 4 o

Brief time 0500 '
Takeoff time 0700
Type flight Air Refuel |

2 pilots

required
Land time 0815
End debrief time 1000

Figurg 5-3b
Example Problem Schedule
A
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The assignment problem can be written

Z = min f(x)

ﬁf subject to

& Lt @y Xig =1 j=1, 2,..., N (3.1)

n .

b;-: l-, S Xv£1 .S U1 1 = 1, 2,0.0' M (302)
x;5 = 0 or 1, x4 integer. (3.3)

Constraints (3.1) require every flight j to have one pilot.
Constraints (3.2) 1limit the total number of flights during
the week for each pilot i. |

Instead of using a formulation like this where each node
j represents one flight, we can reduce the number of j nodes
and therefore the problem size. For example, suppose we have
2 flight and 2 wingman slots for each flight of four aircraft
to be scheduled. We can aggregate two identical nodes (i.e.
flights with ideﬁtical takeoff times, flight durations, pilot
qualification requirements, and types), and make a new node
with a demand of b; = 2. The effect of this adjustment will
be to decrease the number of constraints in (3.1). Equation
(3.2) will remain the same. 1In the schedule, depicted in

figure 2-2, this procedure reduces the number of flight nodes

26
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Flights
c1j 1 2 3
1 2 4 1
3 2
Pilots
3 1 3 2
4 2 1

Example Problem Costs (from chapter 3)

Flight

3 1 2 3
1 1 1 1
Constraint
k 2 1 1
3 1

€ 1

Time Constraint Matrix for Example Problem

Figure 5-3c

Example Problem Cost and Time Constraint Matrices
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from 130 to 80, a 38 percent reduction. Notice that all we

have to do is change equation (3.1) to
Zi ay; Xy = by j=1, 2,..., N. (3.4)

The decrease in problem size would help reduce the work
involved in generating the cost function, and the arc-node
incidence matrix, but constraint (3.1) implies the upper
bound of 1 on the arc i-j, so it will be more beneficial in

the solution algorithm.
3.1.2 Eliminating the Supply Bounds
Depending on the algorithm or computer code used to

solve the problem, it may be useful to have a non-varying

supply at the pilot nodes, instead of the variable bounded

supply in our present formulation. We can accomplish this by

Eﬁ two well known transformations: transforming the lower bound
;? to zero and eliminating the upper bound (Golden and Magnanti
- [171).

H

FT In figure 3-i the arcs s-i are bounded by wu; and 1,,
:“ which represent the maximum and minimum number of flights per
E; week for pilot i. To transform the lower boﬁnds to zero, we
3 substitute

4 27
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the cost (c;;) and time overlap (f,;) matricies, that we
developed in chapter 3. An "X" in the cost matrix means that

the pilot cannot fly that flight (due tc other obligations).

Step 0: 1Initialize., LB" = infinity.

Step 1: The optimal solution is the set of pairings

shown circled in figure 5-4a. .2, = 9.

Step 2: Pilot 4's schedule is infeasible since he is to

fly both flights 1 and 2, so we go to step 3.

Step 3: We find the p;'s by looking at figure 5-4a and
noting that to reassign flight 1 from pilot 4 to pilot 1
would cost nothing, and to reassign flight 2 to pilot 3 would
cost 2 units. We then solve SIP, and find y34= 1, and yz,= 0

(figure 5-4b). LB = 9,

Step 4: The new solution, after reassigning flight 1,

is still not feasible.

Step 5: We choose x,, as the separation variable, so we
set X4, = 1, x4,y = 0, (we know x,; cannot equal 1 in a

feasible solution). Go to step 1.
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X'is = X35 = 1y,

for x;5, so we have the new bounds

and the supply and demands are adjusted as shown in figure
3-2, For example, if the original arc s-i had a lower bound
of 2, and upper bound of 5, and a flow of 4, then the new arc
formed by this transformation would have a lower bound of 0,

an upper bound of 3, and a flow of 2,

We now wish to eliminate the upper bound on the new arc
s-i. We start (in figure 3-3) with the arc s-i already
adjusted so the lower bound is zero. Then we add a dummy
node, 1i', between nodes s and i. We associate the cost of
arc s-i with the new arc s-i', and the upper bound with arc
i'-i. Now we simply reverse arc i'-i (see figure 3-3) which
results in a demand of u,- 1, at i', and a net supply of u;
at node . The upper bound 1is now implied by the node

balance constraint at node 1.

The network retains its bipartite form (figure 3-4). We
can still express the problem in circulation form by using a

super supply node, ss, with arcs ss-i having upper and lower

28
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Flights

Pilot 4 is infeasible

Soution to (NET) - no restrictions

= min Oyu + 2y,.2
subject to ¥, * Y42 a

%4
* %
"0:7,.1-1. y42'0
1B = zR + z, - 9
Figure S5-4a

Example Problem-~First Solution

r
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Eliminating Lower Bounds
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Step 1: The solution to the candidate problem with x4,

= 1 is in figure 5-5a. Zz = 9.

Step 2: Pilot 1's schedule is now infeasible because he

is scheduled for flights 1 and 3,

Step 3: We solve SIP, and find yj, = 1, yi3 = 0, and LB
= 10,

Step 4: Reassigning flight 1 to pilot 2 yields a
feasible sclution (figure 5-5b), so thié candidate problem is

fathomed, and we go to step 6.
Step 6: 10 is less than infinity, so LB"=;10, and the
1
candidate problem with x,, = 1 1is the current incumbent
solution. Step 7: We now look at the problem with x., = 0,
go to step 1.

Step 1: Figure 5-6 shows the new solution when x,, = 0.

Step 2: The optimal value is 11, which is greater than

LB", so we go to step 6.

Step 6: The o0ld solution 1is still the incumbent

solution.,
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Solution to (NET) with

X2 =1

z, = min

1 Y11 ¥ V13

subject to 11 + Y1, ® ] ;

& *
= lyy=livy=0
LB = 10

Figure S5-5a
Example Problem—-~Second Solution
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Figure 5-6
Example Problem—Third Solution
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assignment to overlapping flights.

3.2 Complicating Constraints

3.2.1 Overlap Constraints

Note that flights j are arranged in chronological order.
Consider j, and j, as two different flights, in the same day
(where j, starts before j,). We cannot have j, overlap any
portion of j, and still assign one pilot to them both, We
can model this situation with the multiple choice constraint

X +x”151

ij'
for every pilot 1 we might want to assign to both flights.
Both variables can be zero, but only one can be non-zero and

have the equation satisfied.

To extend this idea, consider any flight k.  Then define

Ry, = {k} U {j : the duration of flight k overlaps

flight j and k starts before j}.

For every pilot i we have a series of constraints associated

with every job he can fill,

33
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Figure 5-7
Branch and Bound Summary
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ZJERKaiJ X,J $1 k=1’ 2'000, Nc (3.10)

The first constraint (k=1) starts with flight 1 and
checks all subsequent flights (j) for time conflicts. If k
and j conflict, a;; 1is included in the summation (i.e.
a;;= 1), otherwise a;; is excluded (i.e. a ;= 0). We then
add a similar constraint for flight 2 (i.e. k = 2), and so
on. If flight 2 conflicts with flight 1, we do not include
flight 1 in the equation k = 2. This is because the equation
with k = 1 already prevents flights 1 and 2 from being
scheduled at the same time. Therefore we can simplify the
task of developing these overlap constraints by including
only future flights in the time overlap constra&nt for flight

k. |

3.2.2 Crew Rest Constraints

For the crew duty days, we need only consider flights
landing later than 12 hours after the first duty of the day.
This normally means checking flights in the beginning of the

day with those at the end of the day. For any flight k, we

define




T P S SR

Step 7: There are no more candidate problems, so

terminate. The optimal solution is x5,y =1, x34 =1, x4, =

1, x43 =1, x5, =1, and x,, = 1, with Z = 10.

This example showed how we may be able to find a
feasible solution by reassigning flights when y* = 1, and
that we can fathom candidate problems by wuse of the best
lower bound. Figure 5-7 gives a picture of how we used the

branch and bound process.

5.4 Network Problem

To find candidate solutions for x to use in the
(SIP;)'s, we must solve an assignment type min-cost network
flow problem. We have three possible solution methods: the
primal simplex (7), the primal-duval (5,6), and the
out-of~kilter (14). See the references for explanations of

the primal-dual and out-of-kilter methods,

The primal simplex method has been modified for use with
min-cost network and transportation problems (17,23). The
program we will use is a specialized version of the simplex
method called the modified distribution method, which is used
for transportation problems. Our code was adapted from

Levin, Kirkpatrick, and Rubin (23), and Poole (34). The
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Sk = {k} U {j: the landing time of flight j is more than
12 hours after the start of flight k, and

flight j is in the same day as flight k}.

Then to prevent someone from flying both early and late, add

the multiple choice equations

Zj(skaij x” _<_ 1 k = 1, 2,.-., N (3.11)
to the problem for each pilot i.

Similarly the overnight crew rest requirement would only
involve the late flights of one day and the early flights of
the next. So if '

Tw = {k} U {j: the start time of flight j is less

than 12 hours from the time at which
flight k ends},

then the associated equations for each pilot i are

Z"e'r“aij x1j Sl k = 1' 2,‘00' Nn (3.12)

3.2.3 Reducing the Number of Complicating Constraints

35
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algorithm finds augmenting paths at each pivot, and then
pivqts the new variable into the basis. We can use the "big
M" method for our cost structures (i.e. 1infeasible pairings
will have very large costs) so that we do not need to start
with a feasible solution. Any solution that satisfies the
supply and demand constraints (even over infeasible arcs)
will serve as a starting solution. We <can use the big M-
property to advantage during our branching process. When we
set x;; = 0 we change c,; to big M and it is pivoted out of
the basis. Similarly, if we wish x;; to be 1, we let
c;; = -M and X;; is pivoted into the basis. We can then
start the intermediate solution process from an almost

feasible (and almost optimal) solution. The time required

for such a solution procedure is shorter than if we solved

the new problem from scratch at each iteration.

The algorithm is explained in detaii in Levin, et al

(23), and 1in many Operations Research texts. Poole (34)

-
"

gives a BASIC code for the algorithm,

5.5 Time Constraint Subproblems

The final section of this chapter describes the

MBI ) Sen B ]
. s

methodology we <can use to solve the subproblem (SIP;)

formulated earlier. There are two methods we will -~onsider
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for possible use. The first 1is to convert (SIP;) into a

knapsack problem and then, using knapsack algorithms, find a

solution, or second, because the problem is small, we can

\?n“‘f\j
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numbers which must be appropriately approximated to find a
solution. As a result, the numbers in the préblem may become

very large.

Garfinkel and Nemhauser describe a method which combines
constraints in pairs until all are combined into one

constraint., Suppose we want to combine the constraints

DN.y £45¥is *+ 5, = 1, (5.17)
and Z§!=1 f2jy1j + 52 = 1 (5'18)
’m into one.

We first find a multiplication factor, &, for one

constraint (say the first). We then multiply the other
constraint by (¢, and then add the two constraints together.
In our problem we can always weight the constraints by
Q= E:fikj +1 (refer to Garfinkel and Nemhauser). The new

constraint is given by
YN, (£;+ QL f,,)y:y + 5, +Qis, =1 + A, (5.19)

We can then combine the new equation with another equation,
and repeat the process until only one constraint remains. 1If

we had a large number of constraints, this method could
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Z =

min f(x)

subject to

Zi a” xij = 1 all j (3.14)

Zi Xi.i, + X51 - Uj 11 all i' (3.15)

Zi' xs,-' = ZJbJ _Zili (3.16)

ZJ‘ a;j; X33 = Uy all i (3-17)

ZJ' fikj x” < 1 k = 1,..-, N, all i (3.18)

Xijo, X5+, Xg43- 20, integer.' (3.19)

The problem has N +2M + 1 node balance constraints
(where N is the number of flights and M is the number of
pilots). Each pilot has N-1 overlap constraints, so in all
we have M(N - 1) of these constraints. Thus, for example, in

a problem
39 node

constraints.

balance

constraints,

37

and 161

time

with 7 pilots and 24 flights, the formulation a..

overlap
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produce some large numbers, but with our problem size the

derived coefficients should not be excessively large.

ii Once we transform the set covering constraints to
. knapsack constraints we can solve the problem by efficient

dynamic programming algorithms. Garfinkel and Nemhauser (16)

give an algorithm that 1is appropriate for solving this

problem.

5.5.2 Enumeration

Because of the small size of (SIP,), enumeration might
be almost as fast as using a knapsack algorithm. Even though
the problem might have a large number of feasible solutions,
on the average we would expect the problems to be very small,
and solution times very small., We also eliminate the time
required to transform the problem. Therefore we will use the
enumeration technique when implementing the solution

procedure.
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3.3 Costs

So far all we know is that we wish to minimize some cost
function having to do with the shortfall in TACM 51-50
requirements. We assume that f(x) is a linear combination of
the individual costs of assigning pilots to flights. This
choice is consistent with our use of the assignment model, so
that each arc has a per unit cost in the objective function,
This also means we can generate the arc costs independently;
that is, the cost of one arc never depends on the cost of

another.

Recall from chapter 2 that we must satisfy the
requirements for the total number of flighés, and for the
number of each type of flight. To accomplish this goal we
break the costs into two components. The first component is
the cost associated with the amount flight j can contribute
to satisfying pilot i's need for total flights. The second
component is the cost associated with the amount flight j can

contribute to'pilot i's requirement for flights of type j.

We define the "cost" of a flight for pilot i to be
proportional to the number of flights pilot i has already
accomplished. In other words, costs will be defined as a
function of the percentage of TACM 51-50 requirements pilot 1

has finished.
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CHAPTER 6

CONCLUSION

6.1 Background

Our goal in this thesis has been to develop a model that
would solve the fighter pilot problem on a micro-computer.

We did not set out to develop a computer code that is in any

- Qi G ey
o etelaty T

(2 2w e
ke

sense best, or even efficient. Rather, we wished to-

Ak )
L0

establish the computational viability of using
micro-computers and modern integer programming methods to
solve scheduling applications such as the squadron pilot
problem. Therefore, most of our observations are geared . . {
toward the problem structure, implementation issues, and a

general evaluation of the method.

In order to ensure that the program would run on a
micro- computer, we developed and tested our code on the IBM
personal computer (IBM PC). Our particular computer was
equipped with a FORTRAN 77 compiler that we decided to use N?T

for this project. The IBM PC contained 128K of internal

memory and 2-320K, 5 1/4" disk drives,
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Every flight, no matter what type (there are other types
of flights with no minimum requirement), will count toward a
pilot's total flight requirement. This cost is constant over

all flights j for a given pilot i,

To satisfy the type requirements, flight j must be the
same type as the requirement in question. The second cost

depends on j, as well as i. Let

N B AR
! e R

c! = the cost (number of flights flown/total

flight requirement) associated with total

: rIvT‘r"
. - PRSI
CE AR

flights for pilot i,

>

and
c?; = the costs (number of type j flfghts

flown/type j flight requirements) associated

Anan et
B

with specific types of flights.

We will associate c] with arcs s-i since they apply to

ML are. 4
i

all flights pilot i flies. Similarly, we associate c?; with
arcs i-j since they depend on the type of flight j is. We
can weight the components to reflect the scheduler's view of
which component is more important relative to the others

(i.e. we may want to emphasize the completion of air

m ok Am ko on e s SR o K INE NS Ak A ARLE
S [ O

refueling requirements over air combat training missions).

The objective function f(x) can now be written as

39
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& To test the program we obtained 0ld schedules from the

{$ 27th Tactical Fighter Squadron to use as the data. We then

e used a subset of the data for the development and initial

S stages of testing. We never progressed far enough to try
full size problems.

s_ _ 6.2 Methodology

?ﬁ Our approach to the problem was to solve it in 3 phases:

?‘ a matrix generation phase, an optimization phase, and an

. output phase.

S The matrix generation phase takes the raw data from user

) data files and converts the data into a cost matrix and a

N feasibility matrix (as we did in the example in Chapter 3).
We puc these two matrices into files, as 1inputs to the

- optimization phase.

. We had five raw data files:

" 1. Pilot data -- this includes the pilot's name and

4 ' {

3 qualifications data,

EI 2, Pilot accomplishment -- this file contains the number

¢

of each type of flight a pilot has flown,
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where w' and w? are appropriate weights assigned to their
respective costs. The weight w? can depend on what type of

flight j is.

The costs are designed to model the differences in the
desirability between the pilots. The weights are designed to
allow the schedulers to stress one type of flight over
another. For instance, the schedulers may decide that
filling the requirements for DART missions is more important
than filling ACTT missions because the squadron will have no
more DART missions for a month (which is often the case). By
making the weight larger for the ACTT missions, relative to

the DART missions, we demphasise ACTT missions relative to

DART missions (since we are minimizing costs).

The problem statement becomes

.n.yz' YT
o A ‘ .

r Z = min Z,,w’c} Xgy - +Z, Z,-wfc%,- Xy (3.21)
-
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3. Pilot availability -- this file contained information
.concerning when a pilot was not to be available for

flying duty (day and times),

4. Requirement data -- this file stores the TACM 51-50

reguirements,

5. Schedule -- this file holds the schedule we wish to
fill., It includes times, type of flight, and the qualif-

ications required to fly it.

The C¢ptimization phase solved the problem using a branch
and bound algorithm as we have discussed in Chapter 5. We
originally tried to use a general network simplex algorithm
{the code was called NETFLO [21]) to solve <che relaxed
network problem. The code proved to be too large for the IBM
PC when imbedded in the branch and bound code. We then
decided to use a code designed to solve the classiqal

Hitchcock transportation problem (34).

The code to solve the subproblems is an enumeration
method. We first develop a matrix that indicates which
pairings are infeasible, so we do not have to consider all

possible solutions to the problem.
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(BIP) 21 X, + Xgi/ = Uy~ 11' all i' (3.23)

Yo xgy. =Lyby- 21, (3.24)
Z¥ a;; Xi3 = Uy all i (3.25)
Ly Fiuy Xy, <1 kK =1,..., N, all i (3.26)

Xij, %X;;., Xg;- 2 0, integer. (3.27)

3.4 Example Formulation
Let us illustrate the formulation with a simple example.
Consider the hypothetical flight schedule shown in figure

3-5, with six formations, requiring eight pilot assignments.

In the example we have four pilots available. Suppose that
we require each of the pilots to fly at least one, but no
;; more than three flights. Suppose too, that pilots 2, 3, and
F] 4 are unavailable for flights 2, 6, and 3 respectively. The
resulting node adjacency matrix {a:;} and time overlap
Eq constraint matrix {f,.;} (constraints (3.26)) are shown in
figure 3-6. Note that this matrix is strictly showing the
conflicts between flights, We will add the restriction that
| a pilot i be available and qualified (i.e. a;;= 1) at a

later time.

H 41




The branch and bound code directs the program flow and
keeps track of the current candidate problem. It puts bounds
on the variables by changing costs depending on whether we
want the variable at 1, 0, or free (e.g., cost equals "M" if
the variable ié restricted to =zero or equals "-M" if the

variable is restricted to 1),

We use a depth first search to find a feasible solution
quickly. I1f we find a feasible solution early in the
enumeration procedure, we can reduce the number of problems
to be congidered. We also include the option of stopping at
the first feasible solution, which might be wuseful for
problems that are too large to solve to optimality or for
problems where we obtain "good" or near optimal solutions
before terminating the complete branch and bound eumeration.

At each branch we use the feasibility matrix (as in the
example problem) to exclude all variables that conflict with
the separation variable. This hopefully helps 1leaa to a
feasible solution. If our trénsportation algorithm then
yields a solution that includes infeasible arcs, we know
there are no feasible solutions along that branch, so we can

fathom the branch.

Once it has discovered the solution to the problem, the

program writes it into a file for the output generation
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Example Problem Schedule

42

A aa

o A0 AN, S Ry
Day 1 Flight 1 Flight 2 Flight 3
Brief time 0515 0930 1400
Takeoff time 0715 1130 1600
Type flight Air Combat  DART . Night Inter

2 pilots 1 pilot 1 pilot

required required required
Land time 0830 1245 1715
End debrief time 1015 1430 19%0
Day 2 Flight 4 Flight 5 Flight 6
Brief time 0500 0930 1400
Takeoff time 0700 1130 1600
Type flight Ar Refuel Afir Combat Night Inter
- 2 pilots 1 pilnt 1 pilot

required required required
Land time 0815 1245 1715
End debrief time 1000 1430 1900

Figure 3-5
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phase.

The output generation phase contains a short program to
sort the solution and display it in a form useful to the

user.

Appendix C contains the computer code of the 3 programs.

6.3 Results

Our first concern was that the cost structure would lead
to unstable solutions. Many of the flight categories have
requirements for only 2 to 4 flights (e.g., DART and INST)
and in our data many pilots had not accomplished any, meaning
that mény of the costs were essentially =zero. We were
concerned that this degeneracy would have a serious effect on

our ability to obtain a solttion.

We found, in the transportation algorithm, that 70 per
cent of the pivots were degenerate, in that they involved no
transfer of flow. They only moved variables in and out of
the  basis. The algorithm did, however, find optimal

solutions each time it was used.
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Flights

Pilots

Node-node adjacency matrix

Flight

Flight

Feasibility constraint matrix

- Figure 3-6
Example Problem Data
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This means that the subproblems consumed the major share

of the solution time. Reducing the solution time would
require an efficient algorithm for the subproblems (such as a

good 0-1 knapsack algorithm),

Another finding was that the number of pilots
unavailable to fly due to other commitments had a significant
impact on the ability to find a feasible solution (to BIP).
Problems with relativelf few instances of unavailable pilots
were solved much faster than problems where pilots had

numerous other duties.

The internal memory of the IBM PC is capable of handling
our program and data. The storage required for an 8 by 25
problem is only 6.5K.. The execution code requires 56K of

storage..

6{4 Conclusion

The methods we have discussed do solve the fighter pilot
scheduling problem. There is, however, room for.improvement.
The computer code could be improved to accelerate
computations. There may be better algorithms (such as the

more complicated multiplier adjustment method) to solve the

problem. In the future, we hope to see if any of these
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Pilot

Completion percentages
(in decimal form [i.e. 1 = 100Z21})

note: a large weight deemphasizes the type
of flight, here we weight all types evenly

Flight

1|1 2 3 4 5 6
ACTT| DART| NINT| AARD | ACTT | NINT

=

1 121311 ? 2 1

Pilot

A\ Example cost matrix

Figure 3-7
Example Problem Costs
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methods can be successfully implemented on a micro-computer.

Let us analyze our program with respect to the goals we
set for ourselves in Chapter 2. The first goal is to ensure
that TACM 51-50 flight requirements are met. We accomplish
this through our objective function. Our costs are such
that, those pilots who are behind relative to other pilots
will be scheduled more often. Although this approach does
not ensure all flight requirements will be met, it does tend
to keep anyone from lagging behind. Moreover, it gives the
schedulers the flexibility to change scheduling priorities

for the pilots by changing the cost structure.

The second goal is to ensure that each pilot's minimum
and maximum number of flights per week are observed. Our
trénsportation algorithm, by virtue of our lower and upper
bound transformations ensures that we comply with this

restriction.

The third goal is to ensure no pilot flies without
proper rest, flies with too long a duty day, or is scheduled
when not available to fly. Our development of the overlap
constraints and the feasibility matrix ensure that no one is

scheduled during those times.
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The fourth objective is to solve the problem in less

time than the present system. The present system takes about
two man-days of work to find a "good" . schedule. Once
proficient wich the data structures, schedulers could solve
the problem in less than 1 hour, including inputting data
into the data files and running the program. Clearly, using
this program would provide time savings for the schedulers

and free them for other tasks.

The fifth goal is to run the program on a
micro-computer. We have successfully accomplished this,
however, we have  not tried full-scale problems yet. The
storage requirements for our sample problems were well within
the capabilities of the IBM PC, and we postulate that we
could, in fact, solve problems of 30 pilots and 120 flights

on this computer.

We did well on the five goals we stated, but we also
mentioned that we would like to have auxiliary programs that
are useful in daily decision making. We were not successful
on this point as time did not permit us to concentrate on
that aspect of the model. In addition to efforts in
bettering the optimization code, we would like to see someone
develop a wuser friendly interface with the program, so that

non-technical people could effectively run the optimization.
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To help understand f,; consider row 1 in ({f,;}. The

first three 1's mean that flight 1 conflicts with flights 2

and 3. Row 3 shows that flights 3 and 4 conflict (because of
overnight crew rest), and row 4 shows that flights 4, 5, and

6 conflict.
To develop the cost matrix {c,;} we assign

weights, as

shown 1in figure 3-7, to the cost components, and multiply
them by the hypothetical completion percentages (also in
figure 3-7). The resulting cost matrix is the last matrix

depicted in figure 3-7.

As an example, consider pilot 1 and flight 2. The cost

Cia, is the weight. for total flights (1); times the

completion percentage of total flights for pilet 1 (100 per

cent = 1), plus the weight for DART missions (1), times the
completion percentage. (2), which is 141 + 1.2 = 3, So
Cy,= 3, as shown in figure 3-7.

Figure 3-8 shows our sample problem, expanded 1in the

form of (BIP). The first 6 constraints are the node balance

constraints for the flights. The second 4 constraints are

The next 5 constraints are for s and the
{fc}

are now adjusted for the individual pilots.

for the 1i' nodes.

pilots. The last 16 constraints are from the matrix,

but We will use

a portion of this problem to illustrate the solution
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procedure in chapter 5.
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CHAPTER 4

REVIEW OF THE LITERATURE

Scheduling has many applications. One major
application, job shop and machine job scheduling problems

(29), have been studied for many years. Conway, Maxwell, and

Miller (92) is a general reference to these problems. The
airline crew scheduling problem (1,30,32,36) has also
received much attention in the literature. Vehicle delivery -
problems (4) (as opposed to routing problems) have also been ;
studied by many researchers. Scheduling algorithms also ‘
apply to staffing problems, such as the nurse scheduling
problem (2,28). Miller (27) gives a survey of personel

scheduling methods as they apply to the public sector.

In general, a personel scheduling problem models
situations in which persons are to be assigned to a subset of
jobs based on some criteria. This chapter will review the
literature dealing with a particular class of applications,
airline pilot scheduling, and with procedures applicable to

the fighter pilot scheduling problem.

4.1 Airline Crew Scheduling
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We are convinced that the use of Operations Research and

Computer Science planning tools, such as those discussed in
this thesis, are of great benefit to the Air Force.
Specifically, we believe that these tools can be used at the
Squadron and Wing levels, not only for pilot scheduling, but
for many of a number of similar scheduling and allocation

problems.
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Arabeyre, Fearnley, Steiger, and Teather (1) survey the
early attempts to solve the airline pilot scheduling problem.
Most researchers separated the problem into two parts, (1)
assigning flight 1legs (one takeoff to one 1landing) to
rotations (a round trip of one to three days), and (2)
assigning pilots to the rotations. The first problem
attempted to minimize "dollar" costs, such as costs of
overnight lodging. The second problem aimed to distribute

pilot monthly flight time evenly.

Usuzlly researchers and practitioners considered tﬁe
first problem to be the most difficult since it had to deal
with complicating constraints due to union rules, FAA
regulations, and company policies. Etcheberry'(ll) developed
an 1implicit enumeration algorithm, using a branch and bound
framework with Lagrangian relaxation, to sclve large set

covering problems such as this one.

Rubin (36) solved the problem by reducing the number of
constraints as much as possible before solving it. He would
then coﬁsidet subsets of the constraint matrix columns, find
the best solution over that subset, and repeat the process

until obtaining a satisfactory solution.

Marsten (26) developed an algorithm to solve the related

set partitioning problem, This algorithm ordered the
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FLIGHT TYPES g

A
Yy

Air Combat Training (ACTT).

R N kY]
PRy Kkl

These are missions where similar types of aircraft practice "dogfight"
maneuvers against each other. Weapons launches and weapons parameters
- are simulated and evaluated with gun camera film (42 of these flights

are required every 6 months).

Dissimilar Air Combat Training (DACT).

These missions are the same as ACTT, except they are flown against other

q
ERY TRV RN

v

types of aircraft ( DACT flights are included in the ACTT requirements).
Airborn Gunnery Practice (DART).

This mission involves firing the 20MM cannon at a metal target (Dart)
which is towed 1500 feet behind another aircraft (1 or 2 of these
missions are required depending on the pilnt's experience level).
Intercept Training (DINT).

Intercept training involves using electronic means (e.g. RADAR) to find
: and simulate firing on a target. Maneuvers are much more restricted

QI than in ACTT or DACT due to the limitations of the equipment (5 or 6 of
these missions are required depending on the pilot's experience level).
Night Intercept Training (NINT).

Night intercepts are the same as day intercepts, except they must be

AR

performed at night (4 are required per 6 month period).
Air to Air Refueling (AARD). J
A specially modified Boeing 707 or DC-10 carries fuel and the fighters

practice intercepting the "tanker" and taking on gas through an 18 foot

long "boom" on the tail end of the tanker (2 required).

I BIT P AR AODE
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constraint matrix lexicographically before starting the
optimization. The algorithm then takes advantage of the
constraint structure to help fathom candidate problems
guickly.

Garfinkel and Nemhauser (15) developed a
set-partitioning procedure that reduces the problem size by
eliminating row and column vectors before applying their
algorithm, The algorithm then orders the data so the rows
with the least number of non-zero entries appear first, and
the columns with the lowest costs are on the left. They ther
use an implicit enumeration algorithm that takes advantage of
this structure to build possible solutions. Pierce (33)
independently developed a similar algorithm,

Nicoletti (32) viewed the second problem (assignment of
pilots to rotations) as a network assignment problem and

successfully used the out-of-kilter method to find solutions.

The fighter pilot scheduling problem differs from the
airline scheduling problem 1in that all the fighter flights
originate and terminate at the same base. This eliminates
the need to develop rotations, although we still must deal
with crew rest and other regulations, just as the airlines

must.,
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Night Air to Air Refueling (NAAR).

Night air to air refueling is the same as day refueling except that it
P must be accomplished at night (1 required).

Instrument Proficiency Flights (INST).

& These flights are dedicated to practicing instrument approaches and

- other instrument procedures. The are only required for non-experienced

pilots (2 every 6 months).
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A possible formulation of the fighter pilot scheduling

problem is in the form of "k-duty period" scheduling problem.

This problem deals with schedules consisting of k independent .

contiguous scheduling periods; for example, a schedule might
assign a person to work k four hour shifts each separated by

two hour breaks.

Shepardson (40) deals with this problem, The general
idea is to start with a proposed (yet feasible) subset of

schedules as the columns of a constraint matrix, with its

-rows- being the jobs to be filled. - He then separztes tha

columns into new columns each with only one contiguous
scheduling period. For example,; he would separate a 2-duty
schedule containing two 4-hour shifts into two  columns each
representing a single 4-hour shift. This solution strategy
is attractive because problems in which all schedules have a
single contiguous duty can be solved as network flow

problems.

He then adds extra side equations to ensure that if a
new column 1is in the solution, then all the new columns
associated with its column in the original problem
formulation, are also in the solution. 1In our example, if
one of the two columns with the 4~hour shifts is in the
solution, then they both must be in the solution. He then

dualizes these side equations and uses Lagrangian relaxation
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APPENDIX B
ADDITIONAL DUTIES
Supervisor of Flying (SOF).

Only Lt Colonels, Majors, and very senior Captians who are experienced

)
§ pilots may serve as SOF. The SOF sits in the control tower, and is

; responsible for the entire flying operations of the Wing. He has the
E authority to cancel flights due to weather or other circumstances. He
3 also is there to assist any aircraft in time of an emergency, since he

can call on other aircraft. fire trucks, and other resources for help.

Runway Supervisory Officer (RSO).

All MR pilots are qualified to serve as RSO. SOF's are qualified, but do

not serve as RSO. The RSO serves in a special building near the end of .
the runway. He ensures the landing patterns are safe and that everyone

lands with their landing gear down. He can also assist in emergencies cvoe wifl
by looking over the emergency aircraft for obvious exterior problems

when it flies by.

Range Training Officer (RTO).

RTO's must be MR and have some experience., Approximately half the pilots
are qualified to be RTO's. The RTO monitors flights which fly on a range
where ground stations receive flight information from aircraft and feed
the information into a computer. The computer then displays the flight
on a video screen. The RTO can see a '""God's eye'" view of the live action
and warn pilots of any dangers. The information is stored, and can be
replayed in the flight debrief. The RTO monitors the live flight for

safety, simulates missle launches in the computer, and relates the missle

results to the fliers.




methods to solve the problem.

4.2 Lagrangian Relaxation

In problems with many complicating constraints,
Lagrangian relaxation techniques that exploit underlying
problem structure (like the single-duty problem that can be
solved as a network flow problem) have so far yielded very
good results for a wide variety of applications. Fisher
(12), Magnarti (25), and Shapiro (39! all give good surveys
of Lagrangian relaxation methods, and mention a number of

application areas.

Lagrangian relaxation methods attempt to. simplify the
problem by dualizing some constraints, multiplying them by
Lagrange multipliers, and adding them to the objective
function, Given a set of multipliers, the relatively easy
relaxed problem is solved. Then given the new solution to
the relaxed problem, we splve for new multipliers. (In
section 5.2 we describe the multiplier selection procedure in
more detail.) We can embed this method into a branch and
bound framework to systematically exhaust all possibilities,
and find the optimal solution. (See (7) and (12) for an

explanation of branch and bound methodology.)

52

P i R S S R T R P N I L P S P A e




il N Gl T AT B e N B AR 0 RIS o0 Vi L LN RIS
o S ASVRL

APPENDIX C

COMPUTER CODES

These codes were written in FORTRAN 77 for the IBM personal computer.
The first program converts the raw data from the data files into the

cost and feasibility matrices.

The second program is the optimization program that takes the cost and
feasibility data and outputs the optimal schedule.

The third program is a short program to format the output as an easy

to read document.
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Several methods have been proposed to solve for the
Lagrange multipliers. The most popular method is subgradient
optimization. The method starts with a proposed solution for
the multipliers, then uses a subgradient of that solution to
move to a better solution. Héld, Wolfe, and Crowder (18)
give a comprehensive explanation and evaluation of
subgradient optimization. Other methods include generalized
linear programming (25), the BOXSTEP method (19), dual ascent
(10), and so called mul.iplier adjustment methods (10,13).
None of these methods has performed as well as subgradient
optimization so far on a wide variety of problems, ¢<hough
multiplier adjustment methods have proved to be successful on
facility location problems (Erlenkotter [10]) and generalized

assignment problems (13).

Ross and Soland (35) proposed a heuristic for finding
multipliers when solving the generalized assignment problem.
They relax the supply node bounds and solve the relaxed
assignment problem. Their method then assigns multipliers
based on the minimum penalty (increase in cost) incurred to
make the relaxed solution feasible. For each supply node
whose supply bound is exceeded, they find a new assignment
that makes that node supply feasible with minimal cost
increase. The increase in cost for that node 1is its new
multiplier. These multiplier problems are in the form of

knapsack problems (i.e. integer programs with only one
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C.1 Program to Organize Raw Data inte Problem Data

PROGRAM FILGEN
IS PROGRAM TAKES THE RAW DATA FILES
AND FROCESSES THEM TO DATA THE PILOT
OPTIMIZATION FROGRAM CAN USE.

INTEGERX2 FEAS(1200),P(30,2),FPOINT(150),C(30, 150},
*ACC (30, 9) ,AVL (30, 10,4) ,REA(3,9) ,5(150,4) ,5CH(150,3),
*NE (30) , ENDDAY (5) ,NF,NPIL,NFLT,1,J,K,UL,J1,MAX,SLI

INTEGER%4 BIG

CHARACTER%4 PC(30,2),T(150,2)

DATA BIG/3200/

EN THE DATA FILES

OPEN(1,FILE="PILOT.DAT",STATUS="0LD")
OPEN(2,FILE="ACCOMP.DAT® ,STATUS="0LD")
OPEN(3,FILE="AVAIL.DAT’,STATUS="0LD") )
OPEN(4,FILE=>REGMNT.DAT® ,5TATUS="0LD")}
OPEN(S, FILE="8CHED.DAT’ ,STATUS="0LD")
OPEN(6,FILE="COST.DAT" , STATUS="NEW")
OPEN(7,FILE="FEAS.DAT . STATUS="NEW")

- ' READ INTO THE FPROGRAM THE RAW DATA FILES

A 1010 FORMAT (10X, 215,3X,A2,4X,A1) \
5 CONTINUE

AMONON DM PRIILES B auni
D R ¥ L AL L [ )

........

1000 FORMAT (//15)

1020 FORMAT (//10X,21I5)

READ (1,1000) NPIL

DO 5 I=1,NPTL
READ(1,1010) (P(I,J),J=1,2),(PC(I1,d),J=1,2)

READ (2, 1020) (ACC(1,3),J=1,9)

DO 6 I=2,NPIL 1
READ (2, 1025) (ACC(I,J),J=1,9) '

1025 FORMAT (10X,91I5)
6 CONTINUE

READ (X, 1030) NE(1)

1030 FORMAT(//10X, 15)

IF(NE(1).E@.0) GOTO 8
DO 7 J=1,NE(1)
READ (3,1035) (AVL (1,J,K) K=1,4)

1035 FORMAT (15X, 13,17,13,17)
7 CONTINUE
8 CONTINUE
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constraint). Until muitiplier adjustment methods were
developed, their method seemed to be faster than any other

for solving generalized assignment problems, their advantage
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DO 10 I=2,NPIL
READ (3,7 (10X, I5)7) NE(I)
IF(NE(I).ER.0) BOTO 10
DO 9 J=1,NE(I)
READ (3, 1035) (AVL(I,J,K),K=1,4)
9 CONTINUE
10 CONTINUE

READ (4, 1050) (REQ(1,Jd),d=1,9)
1050 FORMAT(//10X,91I5)
Do 20 1=2,3
READ (4, 1055) (REQ(I,d3),J=1,9)
1055 FORMAT(10X,915)
20 CONTINUE

READ (5, 1060) NFLT
1060 FORMAT(//19)

READ(S,1065) (ENDDAY(I),I=1,5)
1065 FORMAT (515)

DO S0 I=1,NFLT

READ(S,1070) (T(I,J),Jd=1,2),(8(I,Jd),Jd=1,4)

1070 FORMAT (6X,A4,3X,A2,15,13,12,15)
50 CONTINUE

END OF READING FORTION OF THE PROGRAM
MAIN BRODY OF THE PROGRAM

WRITE(6,1100) NPIL,NFLT
1100 FORMAT (1X,2I5)

SLI=0
DO 65 I=1,NPIL
SLI=SLI+P(I,2)
UL=P(I,1)-P(I,2)
WRITE(&,1110) P(I, 1), UL

1110 FORMAT (1X,21I5)

65 CONTINUE

WRITE(6,1110) NFLT-SLI,NFLT-SLI

CALL ARCMAT (NFLT,NPIL,ACC,AVL,REGQ,PC,T,
XNE, SCH, 8,P,C)

DO 70 J=1,NFLT+NPFIL
WRITE(6,1115) (C(I,J),I=1,NPIL+1)
1115 FORMAT (1X,8I5)
70 CONTINUE

102




S M MU S S YT D S My £

0

100

DEVELOP THE FEASIBILITY MATRIX

NF=0

DO 130 J=1,NFLT

FPOINT (.3)=NF+1

MAX=J+30

IF(MAX.GT.NFLT) MAX=NFLT
DO 90 K=J,MAX
IF(SCH(J,3).6E.SCH{K, 1)) THEN
NF=NF+1

FEAS (NF) =K

ELSE

k=MAX

ENDIF

CONT INUE

CREW DUTY DAYS
Ji=ENDDAY{S(J,4))

DO 100 k=J1-12,J1

IF ((SCH(J,1)+1200).LT.SCH(K,2)) THEN

NF=NF+1
FEAS (NF) =k

ENDIF

CONTINUE

CREW NIGHTS
IF(S(J,4).EQ.4) BOTO 130
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THIS SUBROUTINE DEVELOPS THE ARC MATRIX

LA P L T S L

SUBROUTINE ARCMAT (NFLT,NPIL,ACC, AVL,RER,FC,
*T,NE, SCH, S,P,C)

INTEGER¥2 NFLT,NPIL,ACC(30,1),C(30,1)
INTEGERX2 AVL (30,10,1) ,REQ(3, 1) ,NE (1)
INTEGER%2 ED,U,5(150,1),SCH(150,1),P(30,1)
CHARACTER%¥4 FC(30,1),T(150,1)

INTEGER*2 DAY1,DAY2,1,Jd,K1,T1,T2,BTIME,ETIME
INTEGER¥4 BIG

DATA BRIG/3200/

DO 150 I=1,NPIL+1

DO 140 J=1,NFLT+NPIL
€C(1,J)=3200

CONT INUE

CONTINUE

DO 250 J=1,NFLT
DAY1=(S(J,4)~1) %2400

SCH(J, 1)=({(S(J,2)=2) %¥100) +DAY1+5(J, )
SCH(J, 3)=((S(J,2)+3) ¥100) +DAY1+8(J, 3)
SCH(J, 2)=((S(J,2)+1)%100) +DAY1

ED=G (J,3) +30

IF(ED .GE. 60) THEN

ED=ED-40

SCH(J,2)=SCH(J,2) +100

ENDIF

SCH (J,2)=SCH(J,2) +ED

IF(T {0, 1).Ea. "ACTY") THEN
Ti=2

ELSEIF(T(J,1).EQ.  DACT*) THEN
T1=3

ELSEIF(T(J,1).EQ. DART") THEN
T1=4

ELSEIF(T{(J, 1) .ED.*NINT?) THEN
T1=5

ELSEIF(T(J,1).EQ. DINT?) THEN
Ti=b

ELSEIF(T(J,1).EQ. INST®) THEN
T1=7

ELSEIF(T(J,1).EQ. "AARD*) THEN
Ti=8

ELSE

Ti1=9

ENDIF
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& DO 230 I=1,NPIL
A U=1 :
IF ((PC(I,1).EQ.°WB”) .AND. (T(J,2) .E@. *FL’)) GOTO 230

. DO 200 Ki=1,NE(I) -
: ' DAY2=(AVL (I,K1,1)~1) %2400 '

BTIME=DAY2+AVL (I,K1,2)
ETIME=( {(AVL(I,K1,3)-1)%X2400) +AVL (I ,K1,4)
IF ((ETIME.GT.SCH(J,1)).AND. (BTIME.LT.SCH(J,3))) THEN
U=0
Ki=NE(I)
ENDIF

. 200 CONTINUE

IF (U .ER. 1) THEN
IF (PC(I,2).EQ.’N”) THEN
T2=1
ELSEIF (PC(I,2).EQ.’E’) THEN
T2=2
ELSE
T2=3
ENDIF
IF ((REQ(T2,T1).ER.0) .AND. (T2.NE.3)) THEN
C(1,J)=BIG .
ELSEIF ( (RE@(T2,T1).EQ.0).AND. (T2,EQ.3)) THEN
C(1,J)=(3%(ACC(I,1)%100) /REQ(T2,1))+5
 ELSE
C(I,J)=((ACC(I,T1)%100) /REQ(T2,T1))+5
ENDIF
IF((PC/T,1).EQ."FL*) .AND. (T (.1,2V.EQ. "WG’))
X C(I,J)=C(I,J)%2
ENDIF
230 CONTINUE
250 CONTINUE

DO 260 I=1,NPIL

TR s P - Dk 4

: C(NPIL+1 ,NFLT+I)=((ACC(I,1)%100)/REQ(T2,1))+5
: C(I,NFLT+I)=0

: 260 CONTINUE

i RETURN

" END .
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[ DAY=0
g N=1

N 40 CONTINUE

2 DAY=DAY+1

N WRITE(4,1100) DAY
=Y 1100 FORMAT(?1?,’DAY *,12)

PER=0

[ ¥l FLT=C’
W 50 CONTIMUE
e PER=PER+1

e WRITE(4,1110) PER

™ 1110 FORMAT(?0®,” PERIOD *,12)
0 &0 CONTINUE
. FLT=FLT+1

o WRITE(4,1120) FLT

o 1120 FORMAT(’0?,*FLIGHT®,12)

- WRITE(4,1130) TYPE(N)

* 1130 FORMAT (7 +7,2X,A5)
N WRITE(4,1140) FLTN(N,2)

i 1140 FORMAT (7 +° 2%, IS

3 70 CONTINUE
3 WRITE(4,1150) PNAME (X (N))

e 1150 FORMAT (" +7,2X,A10)

: IF(N.EQ.NFLT) GOTO 80
§ =N+ 1

Y&l IF(FLTN(N~-1,3).EQ.FLTN(N,3)) GOTO SO
& IF(FLTN(N-1,4).ER.FLTN(N,4)) GOTO &0
v IF(FLTN(N-1,5).EQ.FLTN(N,5)) 60TO 7
S GOTO 40 ‘
3 80 CONTINUE
STOF '

.- END

.
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line and the staircase within the matrix. The shaded "bumps”
represent the crew rest constraints that 1link one day's
schedule to the next. If the overnight crew rest constraints
weren't present, the subproblems would separate further into
daily subproblems. For example, figure 5-1c shows the time
constraints for one pilot in the example problem developed in
section 5,3. The arrow shows the "bump" resulting from the
overnight crew rest constraint. If flights 3 and 4 didn't
conflict, then the constraints for day 1 and day 2 would be

separable.

5.2 Lagrangian Relaxation

We could conceivably attempt to use general purpose
integer programming algorithms to solve this problem, but
because of the complexity of the time constraints, these
methods probably would not be very efficient. This brute
force approach does not take advantage of the network
structure in the common constraints, which we can exploit to
solve the problem much more efficiently. By using a
Lagrangian relaxation algorithm, we can take advantage of the

network structure and decrease our solution times.

Fisher (12), Magnanti (25), and Shapiro (39) give a good

description of the Lagrangian technique and give many
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C.2 Optimizatioun Program

FROGRAM SOLUTM

INTEGER%4
INTEGERY4
INTEGER%2
INTEGER%2
INTEGER%2
INTEGERXZ2
INTEGER X2
INTEGERY4
INTEGERXZ
INTEGER%2
INTEGER%2
INTEGERXZ2
INTEGER¥Z2

LR,LESTAR, RIG,NEG,C{10,35) ,C1 (10, 35)

R1(10),K1(35) ,R2(35) ,M(3)

NPIL,NFLT,ITER, TAG, I,J,K,KK, K2, K3, K4
po,Db1,D2,S0,52,F,P1,M0,M1,8,X0,R

S(10,2) ,A(10,35)

D(35,2),R3(35) ,LVAR(2)

XSTAR (45, 2) , XANDY (45,2) ,51 (45,2),Y(45,2)

FJ(7) , SUMPJ, PIMAX, COST, MCOST

FFEAS, BRANCH, FLAG, FFLAG, NEWMAX

NV, L,LV,PVAR(2),8IP(7,7)

XONE(7) ,FERS (7,7)  NOME, MSOL. (7)

TSOL (7) ,FM(7) , BFEAS(7) ,FPOINT (35)

F(80),LYR,CFROR{3,300) ,NF,START,END, QO

DATA RIG/I200/

DATA MNEG/-

10000/

DATA LEBSTAR/ 100000/
DATA LYR/O/
DATA FFEAS/ 1/

OPEM(1,FILE="COST.DAT" ,STATUS="0QLD")
TOUTPUT. DAT® ,STATUS="NEW")
*FEAS.DAT’ ,8TATUS="0LD")
OPEN(4,FILE="HRIP.DAT  ,5TATUS="NEW")

OPEN(2,FILE=
OPEN(3,FILE=

OPZN THE FILES

READ IN THE PROBLEM DATA

000 FORMAT(1X,A,IS)
READ (1, 1000) NPIL,NFLT

FORMAT (1X,215)
S2=NFIL_+1
Di=NFLT+NFIL

SO=0
DO=0
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citations to applications of this methodology. We will give

a general overview here as it relates to the fighter pilot
problem.
Lagrangian relaxation is used to provide bounds in a
branch and bound algorithm by dualizing some of the
; constraints. Typically, this procedure is used by
} constructing a Lagrangian problem that is much easier to
E solve than the original problem.
é In our case we can dualize the node balance constraints,
A associating Lagrange multipliers v; with the sink node
eguations, and multipliers w; with the supply node eguations,

giving the "Lagrangian relaxation" problem

Z(V,W) = min Zi Zj(cijx”) +ZjVj(bj"Ziainij) +

Z"w-l (U,- - Zja”x”) (5.1)
subject to

Zj fiij'ij 51 k=1,o..p N, all i (5'2)

X;; integer. (5.3)

We can rewrite the objective function as
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DO 10 I=1,NPIL

READ(1,1010) S(I,1),D(NFLT+I, 1)
D(NFLT+I,2)=D(NFLT+I,1)
S(I,2)=8(I,1)

1010 FORMAT (1X,215)

10 CONTINUE
READ(1,1010) S(82,1),85(82,2)

DO 20 J=1,D1

READ (1, 1020,END=20) (C¢I,J),I=1,82)
1020 FORMAT(1X,8I5)

PO 18 k=1,82
CLik,J)=C(k,J)
18 CONTINUE
20 CONTINUE

DO 22 I=1,NFLT
D(I,1)=1
D(I,2)=1

22 COMTINUE

READ (3, " (1X,IS) ") NF

DO 25 I=1,35,5

READ (3, " (1X,SIT) ") (FFROINT(I+J) ,J=0,4)

25 CONTINUE
DO 30 I=1,NF,5

READ (3, 7 {(1X, 515 7 ,END=30) (F(I+I),J=0,4)

IO CONTINUE

INITIAL SOLUTION

no=
K=1
DO 70 I=1,NPIL
DO &0 J=I,NFLT,NFIL
81 (K, 1) =1
51 (K, 2)=J
D2=D2+1
ACILJ)=D(J,2)
S(I,2)=8(I,2)-D(J,2)
D(J,2)=0
F=k+1
60 CONT INUE
S1(K,1)=1
S1 (K, 2)=NFLT+I
D2=D2+1
ACT,NFLT+I)=5(I,2)
D(NFLT+I,2)=D(NFLT+I,2)~8(I,2)
S(I1,2)=0
K=k+1
70 CONTINUE

9]
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Z(V,W) = min .Zi L_,-(C,j'(wf"' vj)aij)xij +

(Z,ijj + Ziwiui)° (5.4)

The objective function and constraints (5.2) and (5.3) now
separate into M different set covering problems, one for each

pilot.

We know that for any solution vector, x°, which solves
the node balance equations is a candidate solution to (5.1)

and therefore
Z(v,w) < Zcx‘+Zv(b -Zax‘)+Zw(u —Zax'), (5.5)

where the summations are over the appropriate indices. If x*
is optimal (or even just feasible) to (BIP), then since the
equalities in (BIP) must be satisfied, the second and third
terms in (5.5) must be zero and, therefore, 2Z(v,w) < E;cx'.

We know that Z:cx' = Z, therefore
Z(v,w) £ Z.
A logical goal is to find the values of v and w that maximize

Z(v,w), and therefore give us the sharpest lower bound for

the value Z of the original problem.
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DO 80 J=NFLT+1,D1+D0O

S1(k,1)=82

S1(K,2)=1

D2=D2+1

A2, 1 =D(J,2)

§(82,2)=5(82,2)-D(J,2)
N DI, 2)=0

k=k+1

80 CONTINUE

TAG=0

START TRANSPORTATION ALGORITHM

CONTINUE
TAG=TAG+1

DUAL VARIARLE CALCULATION

§§
gE
g

ITER=0
COMT INUE
ITER=ITER+1
WRITE (4,1150) ITER
FORMAT (1X, " ITERATION® , IS)
DO 1160 I=1,D1+DO
K1 (I)=NEG
RZ (1) =10000
CONT INUE
DO 1190 I=1,82+50
R1(I)=NEG
CONTINUE

1140

1160

1150

R=1

k=1

R1(1)=0

K1(81(1,2))=C(S1(1,1),81(1,2))

GOTO 1240

R1(82)=0

DO 1200 I=D2,Di+2-52,-1

IF(S1(I,1).EQ.S2) THEN
K1(S1¢1,2))=C(51(1,1),81(I,2))
k=k+1
DO 1195 k=1,D2
IF(S1(K,2).EQ.81(I,2)) THEN

R=R+1
ENDIF
CONT INUE
ENDIF
CONT INUE

1195

1200

109
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R1I(S1(K,1))=C(51(1,1),81(I,2))-K1(S51(1,2))
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There are a few methods available for solving for v or w
in maximizing Z(v,w). These include subgradient optimization
(18), generalized linear programming (for the LP dual problem
of maximizing Z(v,w)) (25), and the multiplier adjustment
method (10,13). Subgradient optimization has been the
dominant procedure used so far, but the new multiplier
adjustment method used by Erlenkotter (10) and by Fisher, et

al. (13) seems to work much faster in some applications.

The multiplier adjustment method starts with any values
of the Lagrange multipliers v and w, which might give a
fairly loose lower bound on Z. Then by adjusting each

multiplier one by one, we obtain a feasible solution with a

much sharper lower bound. This sharper lower bound tends to
! fathom candidate problems faster than the Ross and Soland
method, which we discuss next. See the references for

explanations of the procedures discussed so tar.

vy -
B ‘T
. . .l

vy

In the next section we discuss a branch and bound

method, related to Lagrangian relaxation, developed by Ross

YT

and Soland,

5.3 Branch and Bound Algorithm

To solve (BIP), we will use a relaxation algorithm
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CONTINUE

I=1

CONT INUE

I=I+1

IF(K1(S1 (I ,2)).NE.NEG) GOTO 1300
IF(R1(S1{(I,1)).EQ.NEG) GOTO 1330
K1(81(1,2))=C(81(I,1),81(1,2))-R1(81(I,1))
K=k+1

CONTINUE

IF(R1(S1(1,1)).NE.NEG) GOTO 1330
R1(S1(I,1))=C(S1(1,1),81(I,2))-K1{(S1(1,2))
R=R+1

CONT INUE

IF(I.LT.D2) GOTO 1250

IF{(K.LT.D1+DO) GOTO 1240

IF(R.LT.S52+50) GOTO 1240

FIND A VARIABLE TOQ PIVOT ON

I=1
M{1)=0
DO 1500 R=1,82+50
DO 1490 kK=1,D1+DO
IF(R.NE.S1(I,1)) GOTO 1450
IF(E.NE.S1(I,2)) GOTO 1450
IFCIARLK) JEQR.O) . AND.
(R2UD) LOBT.C(RLEY-RI{R)-K1(K))) THEN
R3{(K) =R
ENDIF
I=1+1
GOTO 1490
CONT INUE
IFR2) .GT.C(R,K)-RL(RY K1 {}1) THEN
RZ(K) =R
ENDIF
IF(M(1).LT.C(R,E)-RI(RY-K1(K)) GOTO 1490
M{1)=C (R, K)-R1 (R)-K1{E)
M(2) =R
M{3) =k
CONT INUE
CONT INUE
IF(M(1).GE.Q) GOTO 2790
WRITE(4,1502) ITER,M(2),M{3)
FORMAT (11X, " ITER®, IS, "PIVOT ,215)

FIND A CLOSED PATH FROM R TO K

Y(1,1)=M(2)

Y(1,2)=M(3)

=1

IF(M(2).ERQ.82+530) GOTO 1960
MO=Y (G, 1)

Mi=1
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adapted from Ross and Soland (35). Their algorithm is
designed to solve the generalized assignment problem. Our
problem structure is such that we can use a slightly modified

version of the the algorithm.

5.3.1 Branch and Bound--General

Before discussing the specific aspects of the Ross and
Soland method, we review the general principles of branch and
bound methods. The general idea is to implicitly enumerate
all possible solutions to a problem (such as (BIP)) by
cutting the problem in half at each branching step, and then

finding the optimal feasible solution for each half,

For instance, we solve a relaxed prohlem, such as (NET),
and find the resulting x” to be infeasible to (BIP). We
select a variable, Xgranenr tO branch on, and split all
possible solutions into 2 sets. One set will include all
possibilities where Xgrancn = 1, and the other set will

include all possibilities where Xpranen = 0.

We then solve (NET) agein with the stipulation that
Xoranch = 1. I1f the resulting solution is feasible to (BIP)

then we know we have the best solution for the Xppranen =1

branch, and we can focus attention on the solutions -where
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1610

1620

1660

1670

8080

1720

1780

1370

1890

ROW SEARCH

CONTINUE

I=0

CONT INUE

I=I+1

IF(S1(1,1).6T.M0) GOTO 1670

IF(S1(I,1).LT.MO) GOTO 1660

IF(51(1,2).GE.M1) GOTO 1720

CONT INUE

IF(I.LT.D2) GOTO 1620

CONT INUE

IF(Q.NE. 1) GOTO 1830

WRITE (4, B080)

FORMAT (1X,  DEGENERATE MATRIX™)

STOF *DEGEN’

CHECK IF ALREADY USED

CONT INUE

X0=0

DO 1780 J=1,0
IF(S1(I,1).NE.Y(J, 1)) BOTO 1780
IF(S1(I,2).NE.Y(J,2)) GOTO 1780
Xo=1

CONT INUE

IF(X0.EQ.0) GOTO 1890

M1=S1(I,2)+1

IF(Mi.LT.D1+D0O) GOTD 1660

CAMT INUE
P=Y(0,2)

Pl=Y (@, 1) +1

Y(2,1)=0

Y(R,2)=0

2=0-1

BOTO 2000

CONT INUE

0=0+1

YR, 1)=81(I,1)
Y(Q,2)=51(1,2)
IF(R.LE.2) GOTO 1940
IF(Y(©,2).EQ.M(3)) GOTO 2340
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?; We then go ‘to (NET) again and solve it when we set
- Xpranch = 0. Suppose the new solution is not feasible to
(BIP). Then we can repeat the branching process on another
separation variable. We still 1include the restriction of

Xoranch = 0 along with any new restrictions.

If during this process, any solution to the relaxed

problem has an objective value greater than the value of the
best feasible solution found so far, we can stop looking for
the optimal solution on that the search on a branch. This

process of ending branch is called fathoming.

To find the optimum solution to (BIP), we use the branch
and bound method wuntil we have fathomed all possible
branches. The lowest cost, feasible solution will then be

the optimal solution to (BIP).

5.3.2 Ross and Soland Method

This algorithm utilizes a branch and bound framework
that first relaxes the time overlap constraints and then
solves the network constraints to obtain a candidate solution

x"., It then forms small integer problems from the violated

time constraints, and solves them to find lower bounds and
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19460

2000

2010

2030

2040

2130

COLUMN SEARCH

CONTINUE

P=Y (B, 2)

Pi=1

CONT INUE

K=0

CONT INUE

K=k +1

IF(S1(K,1).LT.F1) BOTO 2040
CONT INUE

IF(S1(K,2).EQ.P) GOTO 2120
CONT INUE

IF(K.LT.D2) GOTO 2010

CONT INUE

MO=Y (@, 1)

Mi=Y (@), ) +1

YR, 1)=0

Y(R,2)=0

0=0-1

GOTO 1610

CHECK FOR UNIGUE PATH SOUARE

CONT INUE

XO=0

DO 2180 J=1,0
IF(S1(K,1).NE.Y(J, 1)) GOTO 2180
IF(S1(K,2) . NE.Y{J,2)) BOTO 2180
X0=1

CONT INUE

IF(X0.EQ.0) GOTO 2250

P1=81(k, 1) +1

IF(P1.LE.S2+50) GOTO 2040

GOTO 2050

ADD STONE SQUARE TO PATH

CONTINUE

@=0+1

YQ,1)=81({kK,1)
Y(Q,2)=81 (K2
IF(e.LE.2) GOTO 2300
IF(Y(@, 1).EQ.M{(2)) BOTO 2340
CONTINUE

FP1=Y(Q,1)+1

MO=Y (@, 1)

Mi=1

G0TO 1610
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separation variables to use in the branching process. We use
the separation variables to form candidate problems in which
we divide the possibilities in half by adding the constraint
that the separation variable must be 1 in our next solution.
If the next solution to (NET) (or (BIP)) is feasible, then we
try the other half of the possibilities (i.e. solve (NET)
when the separation variable 1is fixed at 0). We first
discuss the procedure, then 1illustrate it with the small

example problem formulated in chapter 3.
The relaxed problem is
ZR = min Z'i ZJ C,-jx,-j (5.6)

subject to

2. a,,x,; = b, all j (5.7)
L, Xes. =L,b,- 2,1, (5.8)

(NET) 21 x‘j + xsj: = u; - li (5.9)

3

3 a”X,-, = U all i (5.10)

s

Xi5, X435, Xgj integer (5.11)

which is a min-cost flow transportation problem. Later in
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FIND THE LEAST FLOW CHANGE

2340 CONTINUE

XO=A(Y(2,1),Y(2,2))

DO 2390 K=4,0,2
IF(XO.LE.ACY (K, 1),Y(K,2))) GOTD 2390
XO=A(Y (K, 1),Y(K,2))

2390 CONTINUE

ADD AND SURTRACT X0 ALONG CLOSED PATH

2410 CONTINUE
P=0
DO 2450 K=1,0,2
ACY (K, 1), Y (K, 2) ) =AY (K, 1), Y (K, 2)) +X0
2450 CONTINUE
DO 2630 K=2,0,2
ALY (K, 1), Y (K. 2)) =AY (K, 1), Y (K, 2) ) —XO
IF(ACY (K, 1), Y (K, 2)).6T.0) GOTD 2630
IF (X0.FQ.0) GOTO 2500
IF (Y (K,2) .GT.NFLT) .AND. (Y (K, 1).LT.S2)) GOTO 2630
2500 CONT INUE

I=0
P=p+1
IF(P.BT.1) GOTO 2630
530 CONT INUE
I=I+1
IF(S1(I,1).NE.Y(K,1)) GOTO 2530
IF(S1(I,2).NE.Y(K,2)) GOTO 2530
DRITE (4, B050) V(K,1),Y(K,2) ,¥)
BOS0 FORMAT (1X, "PIVOT OUT®,215,7 FLOW=",1S)
DO 2590 J=1,D2
61(J,1)=51(J+1,1)
51(J,2)=51 (J+1,2)
2590 COMNT INUE
8§1(D2, 1)=0
S1(D2,2)=0
D2=D2~1
2630 CONTINUE

INSERT A NEW STONE SQUARE

I=0
2660 CONTINUE
I=1+1
IF(Y{(1,1).GBT.S1(I, 1)) GOTQ 26&0
IF(Y(1l,1).LT.S1(I,1)) GOTO 2700
IF(Y(1,2).GT.81(1,2)) GOTO 2660
2700 CONTINUE
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the chapter we describe methods for solving (NET).

Let x* denote an optimum flow vector for (NET) and let
Zp denote its optimum objective value. If x” is feasible for
the time constraints, then it is optimal for the original

pilot scheduling problem (12).

I1f the solution x* to (NET) is infeasible to (BIP), we
can then form auxilary problems (subproblems) with the time
constraints. We will have one subproblem for each pilot i.
The objective of these subproblems is to find the minimum
cost reallocation of flights from pilot i to other pilots, so
that pilot 1i's schedule 1is feasible. By solving these
subproblems for all i, we will find a lower bound for 2 in
(BIP). This lower bound will help fathom the current
candidate problem, and help find a separation vari-ble (to

use for the next branch).

Let CTq; be the reduced cost of the pairing of pilot g to
flight j in x". Let T,; be the next larger reduced cost for
flight j, and define

P; = {Cry - Cq;},
then p, represents the minimum penalty for reassigning flight
j with respect to the solution x*. Also let
Jy = {j 3 x7; = 1},

and
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{ DO 2730 J=D2,1,-1

i S1(J+1,1)=81(J, 1)
: S1(J+1,2)=81(J,2)

" 2730 CONTINUE

A S1(1,1)=Y(1,1)

‘ S1(1,2)=Y(1,2)

D2=D2+1

- 60TO 1140

S 2790 CONTINUE

o IF(M(1).6E.0) THEN
= WRITE (4,8120)

: 8120 FORMAT (1X, *SOLUTION IS OPTIMAL®)

- ENDIF

OFPTIMAL SOLUTION, FIND LE

LB=0
DO 2800 I=1,D2
IF(C(S1(1,1),51(1,2)).LE.0) THEN 1
. COST=C1(51¢1,1),S51(1,2)) |
gl ELSE
o COST=C(S1¢(I,1),51(I,2))
ENDIF
LB=LB+(COSTXA(S1(I,1),81(I,2)))
2800 CONTINUE
DO 2805 I=1,NFIL i
LB=LE+((S¢I,1)-D(NFLT+I, 1)) %C1 (I, NFLT+I)) j
2805 CONTINUE |
WRITE(4,8100) TAG, ITER-1,LE
6100 FORMAT(1X, TAG",15," ITER,IS," LEB=",I10)
X IF (LE,GT.RIG+100) GOTO 300
N IF(TAG.GT.40) GOTO 350

] THIS SEGMENT STARTS THE SIP SOLUTION PROCEDURE

NEWMAX=0
FFLAG=0
I=0
410 CONTINUE
I=I+1
NONE=0
DO 415 k=1,7
XONE (F) =0
415 CONTINUE

114
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Yi; 1 if we reassign flight j from pilot i
to pilot r
0 otherwise.

Consider the problem

Z,- = min Zje\JL pJ Y1j (5.12)

subject to

Yi; = 0or 1, (5.14)

where

dik = ZJ £fiu; X35 — 1.
The value of d;, is the minimum number of flights which must
be reassigned to satisfy constraint k. - The -solution, y~,
this problem represents decisions to as to whether to let
pilot i keep flight j (i.e. y7;= 0), or to reassing flight j
to pilot r (i.e. yjs=1).

If yi; = 0, then p; is large, and we would want to keep
this pairing as it is. On the other hand, if yi; = 1 and p;

is small, we will not be hurt much by reassigning flight j to

pilot r.
When we solve (SIP,) the resulting 2z, represents the
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420

430
440

450

4460

470

X

J=0
CONTINUE

J=J+1

IF(S1(J,1).E@.I) THEN

XANDY (J, 1) =51(J, 1)

XANDY (J, 2) =51 (J,2)

IF((A(S1(J,1),581(J,2)).GT.0).AND.
(S1(J3,2).LE.NFLT)) THEN
NONE=NONE+1
XONE (NONE) =XANDY (J, 2)

ENDIF

ENDIF

IF(S1(J,1).LE.I) GOTO 420

WRITE(4," (1X,7IS) ") (XONE(KK) ,KK=1,7)

FILL THE SIP MATRIX

WRITE (4,9000) 'START SIP GEN’,I
DO 440 KkK=1,7
MSOL (KK) =0
DO 430 K4=1,7
SIP (KK, K4)=0
CONT INUE
CONTINUE

FLAG=0D
KE=0Q
CONT INUE
Kk=KE+1
START=FFPOINT (XONE (KK))
END=FFOINT (XONE (ki) +1)
IF(KK.LTONONE)Y THENM
K 4=KK
CONTINUE
K4=K4+1
DO 470 K3=8TART+1,END-1
IF(F(3) .EQ.XONE (K4) ) THEN
FFLAG=1
FLAG=1
SIP(KK,K4)=1
ENDIF
CONT INUE
IF(K4.LT.NONE) GOTO 460
ENDIF
SIP (KK, ,kKK)=1
WRITE(4," {1X,7I5) ") (SIP(KK,J)J=1,7)
IF(KK.LT.NONE) GOTQ 450
WRITE (4,9000) "END SIF MATRIX GEN™,I
WRITE (4,9000) FLAG=",FLAG
IF(FLAG.EQ.0) GOTO 725




.................

minimum increase in cost by changing x° to make pilot i's

schedule feasible. The overall minimum penalty is Xin, SO

a lower bound, LB, on (BIP) is
ﬁ . LB = ZR + Zizi.
We can use LB to fathom nodes in the branch and bound

procedure (35).

As in Ross and Soland, we can use the solutions yj; to
suggest a new solution that tends to be feasible. To form

. the new test solution, we start with the solution x* from

- . _

o (NET). We then change the x corresponding to yi; = 1 to
' zero, and set the corresponding variables variables x.; to
ri one. If this new solution is feasible its objective value is

& given by LB. The solution is also optimal for the candidate

problem we are investigating, since we found the minimum

increase in cost when solving the subproblems.

If the new solution is still infeasible, we need to find
a separation variable (x,,). A logical choice is one of the
variables with y7; = 0. We choose to branch on the x;; with
the maximum p; for all i. When we branch we will set x;; =1

as the first candidate problem, and x,; = 0 as the second.

5.3.3 Algorithm Summary
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FIND THE PJ°S

PIMAX==3
WRITE(4,92000) "START SIP SOLUTION? ,I
MCOST=-5
SUMPJ=0
NV=NONE
DO 500 J=1,NV
K2=X0ONE (J)
K3=R3I(K2)
PI (I =(CKI, K2)-R1 (K3) K1 (E2))-(C(I,K2)-R1(I) K1 (K2))
SUMPJI=8UMPJI+PJ (J)
S00 CONTINUE
INITIALIZE FEAS
DO 520 K=1,NV
DO S10 J=1,NV
FEAS (K, d)=0
S10 CONT INUE
520 CONTINUE
FILL IN FEARS
DO 550 J=1,NV
J= O
525 CONTINUE
J=Jd+1
b0 340 L=1,NV \
IF(SIP(L,Jd).ER.1) THEN
DO 530 K=1,NV
IF(SIP(L,K).EQ.1) THEN
FEAS(J,K)=1

ENDIF

530 CONTINUE
ENDIF
T40 TONTIMUE

IF(I.LT.NV) GOTO 525
550 CONTINUE

START THE BRANCHING PROCESS

J=0
555 CONTINUE
J=J+1
DO 560 kK=1,NV
TSOL (k) =0
560 CONTINUE
TSOL (J)=J
COST=FJ (I
LV=J
FLAG=0
DO S70 KE=1,NV
BFEAS (K) =FEAS (J, k)
IF (BFEAS (k) .EQ.0O) THEN
FLAG=1

............... S . . . . - .
...... PP ILII Y S UL WA QY W GVt Sao ¥




............

> 4

Y STTrr————
N e Lot

P

.......
...........................................

....................

........................

To summarize the procedure, figure 5-2 gives the general
algorithm, in flow chart form, that we will use to solve the

fighter pilot scheduling problem. The following 1is the

written form of the algorithm,

Step 0: 1Initialize. Read in the data and let LB" =
infinity,
Step 1: Solve (NET)-- using a min-cost network flow

algorithm to obtain x* and Z,.

Step 2: Test the solution, Test to see if x* |is

feasible with respect to the time constraints. 1If it is

feasible or if Zp > LB" (the best bound so far), then go to

step 6. Otherwise go to step 3.

Step 3: Solve SIP;, tfor all 1. Use an integer

programming algorithm to find y* and z,, and therefore LB for

the current candidate problem,.

Step 4: Form a new problem--by changing the x wvariables

where y7; = 1 so that x,;, = 0 and x., =1 (r as

defined

previously). If this new problem is feasible go to step 6,

otherwise go to step 5.

Step 5: Select the separation wvariable. From the
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ENDIF

S70 CONT INUE
IF(FLAG.ER. Q) GOTO &00

BRANCH=G

FORWARD BRANCH

575 CONT INUE
k=LY
S80 CONTINUE
K=K+1
IF (RFEAS (K) LER.0) THEN
BRANCH=1
TSOL (K) =K
COST=COST+PJ (K)
LV=K
FLAG=0
DO 590 Ka=k,NV
BFEAS (K4) =BFEAS (K4) +FEAS (K, K4)
IF (RFEAS (K4) .EQ.0) THEN
FLAG=1
ENDIF
590 CONTINUE
=NV
ENDIF
IF(K.LT.NV) GOTQ 580
IF ( (BRANCH.EB. ) .OR. (FLAG.EQ. ) GOTO &00
BRANCH=0
GOTO 575

BRANCH FATHOMED, CHECK FOR OFPTIMUM

&00 CONT INUE
IF (COST.GT.MODSY, THEN
MCOST=COST
DO 610 K=1,NV
IF (TSOL (K).BT.0) THEN
MSOL. (K) =XDONE (K)
ELSE
MSOL. (K) =0
ENDIF
610 CONT INUE
ENDIF

BACEWARD BRANCH

DO 620 K=LV+1,NV
BFEAS (K) =BFEAS (K) ~FEAS (LV, )
620 CONT INUE
675 CONT INUE
IF(TSOL (LV) . NE.O) GOTO &30
LV=LVY~1
IF(LV.LE.0) GOTO 670
BOTO 625
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670

620

700

705

706

707

CONT INUE
IF(LV.ER.J) BOTO 670
TSOL (LV)=0
CosT=COST~PJ (LV)
IF(LV.GE.NV) BGOTD 600
BRANCH=0
6ATO 575

CONTINUE

IF(J.LT.NY) BOTO 555

WE HAVE THE OPTIMAL SOLUTION FOR THIS 1

WRITE (4,9000) "OPTIMUM FOR SIP I
WRITE(4,” (1X,7I5)7) (MSOL (KK),KK=1,7)
J=0
CONT INUE
J=J+1
IF(MSOL (J) .ER. O) THEN
FLAG=0
kKK=0
CONTINUE
KE=KK+1
IF({(S1(KK,1).EQ. I).AND, (S1 (K, 2).ER. XONE (1))} THEN
XANDY (Kk, 1) =R3I (S1 (k¥ ,2))
XANDY (KK, 2) =81 (KK, 2)
FLAG=1
ENDIF
IF(FLAG.EDR. 1) GOTOQ 705
IF(KK.LT.D2) GOTO 700
CONT INUE
ENDIF
IF(J.LE. MV) GOTO 690

CALCULATE BOUND AND SEFPARATION VARIARLE

LE=LB+SUMPJ-MCOST
DO 710 K=1,NV
FLAG=0
IF (MSOL (K) .E@.0) 6OTO 710
IF (K.EQ.NV) THEN
DO 706 J=1,NV
IF (FEAS (J,K).GT.0) THEN
FLAG=FLAG+1
ENDIF
CONTINUE
ELSE
DO 707 J=1,NV
IF (FEAS(K,J) .GT.0) THEN
FLAG=FLAG+1
ENDIF
CONTINUE
ENDIF

PR SRR N ).;'n_..'.;.__-;_;'._.i




” T - Sk
R S S TV R P R A SR R A i \.'f’"‘.*".‘x'. ROEALS

variables where yj; = 0 select the one with the maximum p;.

Set x;5 = 1 and go to step 1.

Step 6: Test for optimality. If LB < LB" then the
current solution becomes the new incumbent solution, and let

LB* = LB, Go to step 7.

Step 7: Select the next candidate problem. Let the
last separation variable (x;;) egual 0, and go to step 1. 1If

there are no more candidate problems, terminate.

This method can be interpreted as Lagrangian relaxation,
as the optimal shadow prices, v* and w", from (NET) which
determine the reduced costs, c;;, can be' viewed as the

Lagrange multipliers.

5.3.4 Branch and Bound--Example

We will 1illustrate the procedure with a simplified

example. We consider the example posed in chapter 3, except

to help simplify the discussion, we will only use the first
four flights (requiring 6 pilots [figure 5-3al). We assume
we have four pilots available, and can model the situation by
the network in figure 5-3b, Each pilot must fly at least

once, but no more than three times., Figure 5-3c specifies
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IF(FLAG.LE. 1) BGOTO 710
J=0

708 CONT INUE
J=J+1
IF((CPROR(1,J3).E@.I).AND.

X (CPROB(2,J) .EQ. XONE(K))} GOTO 710
IF(J.LT.LYR) GOTO 708
IF(PIMAX.LT.PJ(K)) THEN

PIMAX=PJ (K)
PVAR(1) =]
PVAR (2) =XONE (K)
NEWMAX=1
ENDIF
710 CONTINUE
725 CONTINUE ’
WRITE(4,8200) 1 :
8200 FORMAT(1X, "PILOT’, I3, FATHOMED")
IF(I.LT.NPIL) GOTO 410
IF (FFLAG.EG.0) GOTO 280
IF (NEWMAX.ER.Q) GOTO 300
IF((LVAR (1) .ER.PVAR (1)) .AMD.
3 (LVAR(2) .EQ.PVAR{2))) GOTO 300
LVAR (1) =PVAR (1)
LVAR (1) =PVAR(2)

TEST TO SEE IF XANDY IS FEASIBLE

FFLAG=0
I=0
K=0
210 CONTINUE
I=1+1
DO 215 R=1,7
FM(R) =0
215 CONTINUE
DO 220 J=1,D2 ;
IF ( (XANDY (J, 1) .E@. I) . AND. (XANDY (J,2) .LE.NFLT)) THEN’
K=K+1
FM(K) =XANDY (J, 2)
ENDIF
220 CONTINUE

Kk=0

230 CONTINUE
kk=KK+1
START=FPOINT (FM(KK))
END=FPOINT (FM(K¥) +1)
IF(KK.LT.K) THEN
k.4=Kk

240 CONTINUE
t4=k4+1
K3=8START
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CONT INUE
K3=K3+1
IF(FIKZ) CEQ.FM({K4)) THEN

FFLAG=1

Kk =k

K3=END-1

K=K
ENDIF
IF(K3.LT.END-1) GOTO 250
IF(K4.LT.K) GOTO 240
ENDIF
IF(KK.LT.E) GOTO 230 :
IF((I.LT.NRPIL)Y,AND. (FFLAG.ER.Q)) GOTO 210
WRITE(4,2000) FFLAG XANDY=",FFLAG
IF(FFLAG.ER. 1) BOTO 320

A T
U A U e e
N
L
<

CHECK TO SEE IF XANDY IS OPTIMAL TO BIP

IF(LE.LT.LESTAR) THEN
LESTAR=LE
po 270 J=1,D2
XSTAR(J, 1) =XANDY {J, 1/
XSTAR (I, 2)=XANDY (3, 2)
270 COMTINUE
ENDIF
IF(FFEARS.EQ. 1) GOTO 350
60OTO 300

CHECK IF S1 IS OFTIMAL

280 CONTIMUE
IFILR.LT.LBESTAR)Y THEN
LESTAR=LR
DO 290 J=1,D2
X8TAR(J, 1)=681(J, 1)
XSTAR(J,2)=81 (J,2)
290 CONT INUE
ENDIF
IF(FFEAS.ED. 1) GOTO 350

E OVERALL ERRANCH AND ROUND CONTROL

ELIMINATE VARIABLES

P

300 CONTINUE

WRITE(4,8030) TAG
8030 FORMAT(1X, "TAG",IS," ELIMINATE VARS®)
310 CONTINUE

Lslewt s
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Network Representation of the Sample Problew
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IF(LYR.E®.0) GOTO 350
FLAG=0
J=CFROB(1,LYR)
K=CPROE {2, LYR)
IF (CPROB(3,LYR) .ER.0) THEN
C (T, K)=C1 (J, )
CPROE (1,LYR) =0
CPROE (2, LYR) =0

LYR=LYR~1
FLAG=1
ELSE

CI,K)=RIG
CFROB(3,LYR)=0
ENDIF
IF(FLAG.EG. 1) GOTO Z10
G070 90

ADD NEW VARIABLES

£
r
<

CONT INUE
WRITE (4,8040) TAG,PVAR(1) ,PVAR(2)
8040 FORMAT(1X,"TAG’,I5,” ADD VAR®,215)
LYR=LYR+1 .
CPROE (1,LYR)=FYAR (1)
CPROE (2, LYR) =FVAR (2)
CPROE (3, LYR) =1
C(PVAR (1) ,PVAR (2)) ==3200
ADD ZERO VARIABLES
IF(FVAR(2).LT.11) THEN
CO=FVAR (2) -1
ELSE
ED=10
ENDIF
DO 327 K=PVAR(2)-00,PVAR(2) -1
DO 323 J=FPOINT(K)+1,FPOINT (K+1)~1
IF (F(J).EQ.PVAR(2)) THEN
LYR=LYR+1
CPROE (1,LYR) =PVAR (1)
CPROE (2, LYR) =K
CPROE (3, LYR) =0
C(PVAR (1) ,K)=RIG
ENDIF
323 CONT INUE
327 CONTINUE
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Day 1 Flight 1 Flight 2 Flight 3
Brief time 0515 0930 1400
Takeoff time 0715 1130 1600
Type flight Air Combat DART Night Inter

2 pilots 1 pilot 1 pilot

required required required
Land time 0830 1245 1715
End debrief time 1015 1430 1900

" pay 2 Flight 4 o

Brief time 0500 '
Takeoff time 0700
Type flight Air Refuel |

2 pilots

required
Land time 0815
End debrief time 1000

Figurg 5-3b
Example Problem Schedule
A
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START=FFOINT (FVAR(2))
END=FFOINT (FVAR(Z2) +1)
PO 330 J=8TART+1,END-1
I=PVAR (1)
LYR=LYR+1
CPROR(1,LYR)=1
CPROEB(2,LYR)=F (J)
CPROB(3,LYR)=0
C(I,F{(I)=RIG
3Z0 CONTINUE
GOTO0 90

i
OFTIMAL SOLUTION IS REACHED ‘
|

50 CONTINUE
DO 360 1=1,D2
IF ((A(XSTAR(I, 1) ,XSTAR(I,2) ) .GT.0) . AND.
X (XSTAR(I,2).LE.NFLT)) THEN
WRITE(2,” (1X,3110)°) XSTAR(I,1),XSTAR(I.2),
% AXSTAR(I, 1), XSTAR(I,2))
ENDIF
40 CONTINUE
LE=0
DO 370 I=1,D?
LE=LE+ (Ci (XSTAR(I, 1) ,XSTAR(T,2) ) ¥A(XSTAR(I, 1),
X XSTAR(L[,2));
=70 CONTINUE
WRITE (2,8000) LESTAR
8GO0 FORMAT(1X,110,” = LBSTAR")
WRITE(2,8010) TAG
8010 FORMAT (1X,110,7 = NO. OF ITERATIONS®)
STOP
END
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C.3 Program to Format Schedule

PROGRAM OQOUTPUT

INTEGERX2 FIL (300,2) ,FLTN(150,5) ,NUMF, X (150)
INTEGER%2 FLAG,NPIL,NFLT,PER,DAY,FLT,N
CHARACTERY4 TYPE (150) , PNAME (35)

OPEN(1,FILE="0UTPUT.DAT® ,STATUS="0LD")
OFEN(2,FILE="PILOT.DAT’ ,STATUS="0LD")
OPEN(3,FILE="SCHED.DAT® ,STATUS="0LD")
OPEN(4,FILE="BYNAME.DAT" , STATUS="NEW")

READ (2, 1000) NPIL
1000 FORMAT(//15)
READ (X, " (//15)7) NFLT

DO 10 I=1.NPIL f
READ (2, 1020) PNAME (D)
1020 FORMAT (A10)
10 CONTINUE

DO 20 J=1,NFLT
READ (3, 1030) TYPE(J), (FLTN(J,K) ,K=1,5)

1030 FORMAT (3X,AS,5X,515)
20 CONTINUE e

PO F0 E=1,WNFLT
READ(1,1040) FIL(k 1) FIL(K,2)
1040 FORMAT (1%,2110)
30 CONTINUE

FLT=0
35S CONTINUE
FLT=FLT+1
K=0
FLAG=0
CONT INUE
K=K+1
IF(FIL(K,2).EQ.FLT) THEN
X(FLT)=FIL(K,1)
FLAG=1
ENDIF
IF(FLAG.E@. 1) GOTO =
IF(K.LT.NFLT) GODTO =
IF(FLT.LT.NFLT) GOTO

2
~

5
7

-
- 5
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the cost (c;;) and time overlap (f,;) matricies, that we
developed in chapter 3. An "X" in the cost matrix means that

the pilot cannot fly that flight (due tc other obligations).

Step 0: 1Initialize., LB" = infinity.

Step 1: The optimal solution is the set of pairings

shown circled in figure 5-4a. .2, = 9.

Step 2: Pilot 4's schedule is infeasible since he is to

fly both flights 1 and 2, so we go to step 3.

Step 3: We find the p;'s by looking at figure 5-4a and
noting that to reassign flight 1 from pilot 4 to pilot 1
would cost nothing, and to reassign flight 2 to pilot 3 would
cost 2 units. We then solve SIP, and find y34= 1, and yz,= 0

(figure 5-4b). LB = 9,

Step 4: The new solution, after reassigning flight 1,

is still not feasible.

Step 5: We choose x,, as the separation variable, so we
set X4, = 1, x4,y = 0, (we know x,; cannot equal 1 in a

feasible solution). Go to step 1.
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Pilot 4 is infeasible
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= min Oyu + 2y,.2
subject to ¥, * Y42 a

%4
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"0:7,.1-1. y42'0
1B = zR + z, - 9
Figure S5-4a

Example Problem-~First Solution
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Step 1: The solution to the candidate problem with x4,

= 1 is in figure 5-5a. Zz = 9.

Step 2: Pilot 1's schedule is now infeasible because he

is scheduled for flights 1 and 3,

Step 3: We solve SIP, and find yj, = 1, yi3 = 0, and LB
= 10,

Step 4: Reassigning flight 1 to pilot 2 yields a
feasible sclution (figure 5-5b), so thié candidate problem is

fathomed, and we go to step 6.

Step 6: 10 is less than infinity, so LB"=510, and the
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Figure 5-7
Branch and Bound Summary
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Step 7: There are no more candidate problems, so

terminate. The optimal solution is x5,y =1, x34 =1, x4, =

1, x43 =1, x5, =1, and x,, = 1, with Z = 10.

This example showed how we may be able to find a
feasible solution by reassigning flights when y* = 1, and
that we can fathom candidate problems by wuse of the best
lower bound. Figure 5-7 gives a picture of how we used the

branch and bound process.

5.4 Network Problem

To find candidate solutions for x to use in the
(SIP;)'s, we must solve an assignment type min-cost network
flow problem. We have three possible solution methods: the
primal simplex (7), the primal-duval (5,6), and the
out-of~kilter (14). See the references for explanations of

the primal-dual and out-of-kilter methods,

The primal simplex method has been modified for use with
min-cost network and transportation problems (17,23). The
program we will use is a specialized version of the simplex
method called the modified distribution method, which is used
for transportation problems. Our code was adapted from

Levin, Kirkpatrick, and Rubin (23), and Poole (34). The
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algorithm finds augmenting paths at each pivot, and then
pivqts the new variable into the basis. We can use the "big
M" method for our cost structures (i.e. 1infeasible pairings
will have very large costs) so that we do not need to start
with a feasible solution. Any solution that satisfies the
supply and demand constraints (even over infeasible arcs)
will serve as a starting solution. We <can use the big M-
property to advantage during our branching process. When we
set x;; = 0 we change c,; to big M and it is pivoted out of
the basis. Similarly, if we wish x;; to be 1, we let
c;; = -M and X;; is pivoted into the basis. We can then
start the intermediate solution process from an almost

feasible (and almost optimal) solution. The time required

for such a solution procedure is shorter than if we solved

the new problem from scratch at each iteration.

The algorithm is explained in detaii in Levin, et al

(23), and 1in many Operations Research texts. Poole (34)

-
"

gives a BASIC code for the algorithm,

5.5 Time Constraint Subproblems

The final section of this chapter describes the

MBI ) Sen B ]
. s

methodology we <can use to solve the subproblem (SIP;)

formulated earlier. There are two methods we will -~onsider
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for possible use. The first 1is to convert (SIP;) into a
knapsack problem and then, using knapsack algorithms, find a
solution, or second, because the problem is small, we can

enumerate the solutions and select the best one.

5.5.1 Knapsack Solution Method

Shepardson (40) and Garfinkel and Nemhauser (16) show
two different methods for converting multiple constraints to

a sirgle zconstreaint.

Shepardson uses a prime number technigque that will take
a set of constraints such as the time overlap constraints in
(BIP), and combine them into a single constraint. For

example, the constraints

Z?m fiksYis + sk = 1 for k =1, 2,..., K, (5.15)

forms the single constraint

Z?=1Z'd-1(fu In Py )y, +
Z}?N‘1 ( In P,)s, = Neo( In PL), (5.16)

where P, equals the k th prime number. The main shortcoming

of this method is that the 1ln P, are normally irrational
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numbers which must be appropriately approximated to find a
solution. As a result, the numbers in the préblem may become

very large.

Garfinkel and Nemhauser describe a method which combines
constraints in pairs until all are combined into one

constraint., Suppose we want to combine the constraints

DN.y £45¥is *+ 5, = 1, (5.17)
and Z§!=1 f2jy1j + 52 = 1 (5'18)
’m into one.

We first find a multiplication factor, &, for one

constraint (say the first). We then multiply the other
constraint by (¢, and then add the two constraints together.
In our problem we can always weight the constraints by
Q= E:fikj +1 (refer to Garfinkel and Nemhauser). The new

constraint is given by
YN, (£;+ QL f,,)y:y + 5, +Qis, =1 + A, (5.19)

We can then combine the new equation with another equation,
and repeat the process until only one constraint remains. 1If

we had a large number of constraints, this method could
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produce some large numbers, but with our problem size the

derived coefficients should not be excessively large.

ii Once we transform the set covering constraints to
. knapsack constraints we can solve the problem by efficient

dynamic programming algorithms. Garfinkel and Nemhauser (16)

give an algorithm that 1is appropriate for solving this

problem.

5.5.2 Enumeration

Because of the small size of (SIP,), enumeration might
be almost as fast as using a knapsack algorithm. Even though
the problem might have a large number of feasible solutions,
on the average we would expect the problems to be very small,
and solution times very small., We also eliminate the time
required to transform the problem. Therefore we will use the
enumeration technique when implementing the solution

procedure.
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CHAPTER 6

CONCLUSION

6.1 Background

Our goal in this thesis has been to develop a model that
would solve the fighter pilot problem on a micro-computer.

We did not set out to develop a computer code that is in any

- Qi G ey
o etelaty T

(2 2w e
ke

sense best, or even efficient. Rather, we wished to-

Ak )
L0

establish the computational viability of using
micro-computers and modern integer programming methods to
solve scheduling applications such as the squadron pilot
problem. Therefore, most of our observations are geared . . {
toward the problem structure, implementation issues, and a

general evaluation of the method.

In order to ensure that the program would run on a
micro- computer, we developed and tested our code on the IBM
personal computer (IBM PC). Our particular computer was
equipped with a FORTRAN 77 compiler that we decided to use N?T

for this project. The IBM PC contained 128K of internal

memory and 2-320K, 5 1/4" disk drives,
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& To test the program we obtained 0ld schedules from the

{$ 27th Tactical Fighter Squadron to use as the data. We then

e used a subset of the data for the development and initial

S stages of testing. We never progressed far enough to try
full size problems.

s_ _ 6.2 Methodology

?ﬁ Our approach to the problem was to solve it in 3 phases:

?‘ a matrix generation phase, an optimization phase, and an

. output phase.

S The matrix generation phase takes the raw data from user

) data files and converts the data into a cost matrix and a

N feasibility matrix (as we did in the example in Chapter 3).
We puc these two matrices into files, as 1inputs to the

- optimization phase.

. We had five raw data files:

" 1. Pilot data -- this includes the pilot's name and

4 ' {

3 qualifications data,

EI 2, Pilot accomplishment -- this file contains the number

¢

of each type of flight a pilot has flown,
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3. Pilot availability -- this file contained information
.concerning when a pilot was not to be available for

flying duty (day and times),

4. Requirement data -- this file stores the TACM 51-50

reguirements,

5. Schedule -- this file holds the schedule we wish to
fill., It includes times, type of flight, and the qualif-

ications required to fly it.

The C¢ptimization phase solved the problem using a branch
and bound algorithm as we have discussed in Chapter 5. We
originally tried to use a general network simplex algorithm
{the code was called NETFLO [21]) to solve <che relaxed
network problem. The code proved to be too large for the IBM
PC when imbedded in the branch and bound code. We then
decided to use a code designed to solve the classiqal

Hitchcock transportation problem (34).

The code to solve the subproblems is an enumeration
method. We first develop a matrix that indicates which
pairings are infeasible, so we do not have to consider all

possible solutions to the problem.
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The branch and bound code directs the program flow and
keeps track of the current candidate problem. It puts bounds
on the variables by changing costs depending on whether we
want the variable at 1, 0, or free (e.g., cost equals "M" if
the variable ié restricted to =zero or equals "-M" if the

variable is restricted to 1),

We use a depth first search to find a feasible solution
quickly. I1f we find a feasible solution early in the
enumeration procedure, we can reduce the number of problems
to be congidered. We also include the option of stopping at
the first feasible solution, which might be wuseful for
problems that are too large to solve to optimality or for
problems where we obtain "good" or near optimal solutions
before terminating the complete branch and bound eumeration.

At each branch we use the feasibility matrix (as in the
example problem) to exclude all variables that conflict with
the separation variable. This hopefully helps 1leaa to a
feasible solution. If our trénsportation algorithm then
yields a solution that includes infeasible arcs, we know
there are no feasible solutions along that branch, so we can

fathom the branch.

Once it has discovered the solution to the problem, the

program writes it into a file for the output generation
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phase.

The output generation phase contains a short program to
sort the solution and display it in a form useful to the

user.

Appendix C contains the computer code of the 3 programs.

6.3 Results

Our first concern was that the cost structure would lead
to unstable solutions. Many of the flight categories have
requirements for only 2 to 4 flights (e.g., DART and INST)
and in our data many pilots had not accomplished any, meaning
that mény of the costs were essentially =zero. We were
concerned that this degeneracy would have a serious effect on

our ability to obtain a solttion.

We found, in the transportation algorithm, that 70 per
cent of the pivots were degenerate, in that they involved no
transfer of flow. They only moved variables in and out of
the  basis. The algorithm did, however, find optimal

solutions each time it was used.
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This means that the subproblems consumed the major share

of the solution time. Reducing the solution time would
require an efficient algorithm for the subproblems (such as a

good 0-1 knapsack algorithm),

Another finding was that the number of pilots
unavailable to fly due to other commitments had a significant
impact on the ability to find a feasible solution (to BIP).
Problems with relativelf few instances of unavailable pilots
were solved much faster than problems where pilots had

numerous other duties.

The internal memory of the IBM PC is capable of handling
our program and data. The storage required for an 8 by 25
problem is only 6.5K.. The execution code requires 56K of

storage..

6{4 Conclusion

The methods we have discussed do solve the fighter pilot
scheduling problem. There is, however, room for.improvement.
The computer code could be improved to accelerate
computations. There may be better algorithms (such as the

more complicated multiplier adjustment method) to solve the

problem. In the future, we hope to see if any of these




methods can be successfully implemented on a micro-computer.

Let us analyze our program with respect to the goals we
set for ourselves in Chapter 2. The first goal is to ensure
that TACM 51-50 flight requirements are met. We accomplish
this through our objective function. Our costs are such
that, those pilots who are behind relative to other pilots
will be scheduled more often. Although this approach does
not ensure all flight requirements will be met, it does tend
to keep anyone from lagging behind. Moreover, it gives the
schedulers the flexibility to change scheduling priorities

for the pilots by changing the cost structure.

The second goal is to ensure that each pilot's minimum
and maximum number of flights per week are observed. Our
trénsportation algorithm, by virtue of our lower and upper
bound transformations ensures that we comply with this

restriction.

The third goal is to ensure no pilot flies without
proper rest, flies with too long a duty day, or is scheduled
when not available to fly. Our development of the overlap
constraints and the feasibility matrix ensure that no one is

scheduled during those times.
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The fourth objective is to solve the problem in less

time than the present system. The present system takes about
two man-days of work to find a "good" . schedule. Once
proficient wich the data structures, schedulers could solve
the problem in less than 1 hour, including inputting data
into the data files and running the program. Clearly, using
this program would provide time savings for the schedulers

and free them for other tasks.

The fifth goal is to run the program on a
micro-computer. We have successfully accomplished this,
however, we have  not tried full-scale problems yet. The
storage requirements for our sample problems were well within
the capabilities of the IBM PC, and we postulate that we
could, in fact, solve problems of 30 pilots and 120 flights

on this computer.

We did well on the five goals we stated, but we also
mentioned that we would like to have auxiliary programs that
are useful in daily decision making. We were not successful
on this point as time did not permit us to concentrate on
that aspect of the model. In addition to efforts in
bettering the optimization code, we would like to see someone
develop a wuser friendly interface with the program, so that

non-technical people could effectively run the optimization.
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We are convinced that the use of Operations Research and

Computer Science planning tools, such as those discussed in
this thesis, are of great benefit to the Air Force.
Specifically, we believe that these tools can be used at the
Squadron and Wing levels, not only for pilot scheduling, but
for many of a number of similar scheduling and allocation

problems.
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APPENDIX A
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FLIGHT TYPES g

A
Yy

Air Combat Training (ACTT).

R N kY]
PRy Kkl

These are missions where similar types of aircraft practice "dogfight"
maneuvers against each other. Weapons launches and weapons parameters
- are simulated and evaluated with gun camera film (42 of these flights

are required every 6 months).

Dissimilar Air Combat Training (DACT).

These missions are the same as ACTT, except they are flown against other

q
ERY TRV RN

v

types of aircraft ( DACT flights are included in the ACTT requirements).
Airborn Gunnery Practice (DART).

This mission involves firing the 20MM cannon at a metal target (Dart)
which is towed 1500 feet behind another aircraft (1 or 2 of these
missions are required depending on the pilnt's experience level).
Intercept Training (DINT).

Intercept training involves using electronic means (e.g. RADAR) to find
: and simulate firing on a target. Maneuvers are much more restricted

QI than in ACTT or DACT due to the limitations of the equipment (5 or 6 of
these missions are required depending on the pilot's experience level).
Night Intercept Training (NINT).

Night intercepts are the same as day intercepts, except they must be

AR

performed at night (4 are required per 6 month period).
Air to Air Refueling (AARD). J
A specially modified Boeing 707 or DC-10 carries fuel and the fighters

practice intercepting the "tanker" and taking on gas through an 18 foot

long "boom" on the tail end of the tanker (2 required).

I BIT P AR AODE
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Night Air to Air Refueling (NAAR).

Night air to air refueling is the same as day refueling except that it
P must be accomplished at night (1 required).

Instrument Proficiency Flights (INST).

& These flights are dedicated to practicing instrument approaches and

- other instrument procedures. The are only required for non-experienced

pilots (2 every 6 months).
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APPENDIX B
ADDITIONAL DUTIES
Supervisor of Flying (SOF).

Only Lt Colonels, Majors, and very senior Captians who are experienced

)
§ pilots may serve as SOF. The SOF sits in the control tower, and is

; responsible for the entire flying operations of the Wing. He has the
E authority to cancel flights due to weather or other circumstances. He
3 also is there to assist any aircraft in time of an emergency, since he

can call on other aircraft. fire trucks, and other resources for help.

Runway Supervisory Officer (RSO).

All MR pilots are qualified to serve as RSO. SOF's are qualified, but do

not serve as RSO. The RSO serves in a special building near the end of .
the runway. He ensures the landing patterns are safe and that everyone

lands with their landing gear down. He can also assist in emergencies cvoe wifl
by looking over the emergency aircraft for obvious exterior problems

when it flies by.

Range Training Officer (RTO).

RTO's must be MR and have some experience., Approximately half the pilots
are qualified to be RTO's. The RTO monitors flights which fly on a range
where ground stations receive flight information from aircraft and feed
the information into a computer. The computer then displays the flight
on a video screen. The RTO can see a '""God's eye'" view of the live action
and warn pilots of any dangers. The information is stored, and can be
replayed in the flight debrief. The RTO monitors the live flight for

safety, simulates missle launches in the computer, and relates the missle

results to the fliers.
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APPENDIX C

COMPUTER CODES

These codes were written in FORTRAN 77 for the IBM personal computer.
The first program converts the raw data from the data files into the

cost and feasibility matrices.

The second program is the optimization program that takes the cost and
feasibility data and outputs the optimal schedule.

The third program is a short program to format the output as an easy

to read document.
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C.1 Program to Organize Raw Data inte Problem Data

PROGRAM FILGEN
IS PROGRAM TAKES THE RAW DATA FILES
AND FROCESSES THEM TO DATA THE PILOT
OPTIMIZATION FROGRAM CAN USE.

INTEGERX2 FEAS(1200),P(30,2),FPOINT(150),C(30, 150},
*ACC (30, 9) ,AVL (30, 10,4) ,REA(3,9) ,5(150,4) ,5CH(150,3),
*NE (30) , ENDDAY (5) ,NF,NPIL,NFLT,1,J,K,UL,J1,MAX,SLI

INTEGER%4 BIG

CHARACTER%4 PC(30,2),T(150,2)

DATA BIG/3200/

EN THE DATA FILES

OPEN(1,FILE="PILOT.DAT",STATUS="0LD")
OPEN(2,FILE="ACCOMP.DAT® ,STATUS="0LD")
OPEN(3,FILE="AVAIL.DAT’,STATUS="0LD") )
OPEN(4,FILE=>REGMNT.DAT® ,5TATUS="0LD")}
OPEN(S, FILE="8CHED.DAT’ ,STATUS="0LD")
OPEN(6,FILE="COST.DAT" , STATUS="NEW")
OPEN(7,FILE="FEAS.DAT . STATUS="NEW")

- ' READ INTO THE FPROGRAM THE RAW DATA FILES

A 1010 FORMAT (10X, 215,3X,A2,4X,A1) \
5 CONTINUE

AMONON DM PRIILES B auni
D R ¥ L AL L [ )

........

1000 FORMAT (//15)

1020 FORMAT (//10X,21I5)

READ (1,1000) NPIL

DO 5 I=1,NPTL
READ(1,1010) (P(I,J),J=1,2),(PC(I1,d),J=1,2)

READ (2, 1020) (ACC(1,3),J=1,9)

DO 6 I=2,NPIL 1
READ (2, 1025) (ACC(I,J),J=1,9) '

1025 FORMAT (10X,91I5)
6 CONTINUE

READ (X, 1030) NE(1)

1030 FORMAT(//10X, 15)

IF(NE(1).E@.0) GOTO 8
DO 7 J=1,NE(1)
READ (3,1035) (AVL (1,J,K) K=1,4)

1035 FORMAT (15X, 13,17,13,17)
7 CONTINUE
8 CONTINUE
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DO 10 I=2,NPIL
READ (3,7 (10X, I5)7) NE(I)
IF(NE(I).ER.0) BOTO 10
DO 9 J=1,NE(I)
READ (3, 1035) (AVL(I,J,K),K=1,4)
9 CONTINUE
10 CONTINUE

READ (4, 1050) (REQ(1,Jd),d=1,9)
1050 FORMAT(//10X,91I5)
Do 20 1=2,3
READ (4, 1055) (REQ(I,d3),J=1,9)
1055 FORMAT(10X,915)
20 CONTINUE

READ (5, 1060) NFLT
1060 FORMAT(//19)

READ(S,1065) (ENDDAY(I),I=1,5)
1065 FORMAT (515)

DO S0 I=1,NFLT

READ(S,1070) (T(I,J),Jd=1,2),(8(I,Jd),Jd=1,4)

1070 FORMAT (6X,A4,3X,A2,15,13,12,15)
50 CONTINUE

END OF READING FORTION OF THE PROGRAM
MAIN BRODY OF THE PROGRAM

WRITE(6,1100) NPIL,NFLT
1100 FORMAT (1X,2I5)

SLI=0
DO 65 I=1,NPIL
SLI=SLI+P(I,2)
UL=P(I,1)-P(I,2)
WRITE(&,1110) P(I, 1), UL

1110 FORMAT (1X,21I5)

65 CONTINUE

WRITE(6,1110) NFLT-SLI,NFLT-SLI

CALL ARCMAT (NFLT,NPIL,ACC,AVL,REGQ,PC,T,
XNE, SCH, 8,P,C)

DO 70 J=1,NFLT+NPFIL
WRITE(6,1115) (C(I,J),I=1,NPIL+1)
1115 FORMAT (1X,8I5)
70 CONTINUE
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DEVELOP THE FEASIBILITY MATRIX

NF=0
DO 130 J=1,NFLT
FPOINT (.3)=NF+1
MAX=J+30
IF(MAX.GT.NFLT) MAX=NFLT
DO 90 K=J,MAX
IF(SCH(J,3).6E.SCH{K, 1)) THEN
NF=NF+1
FEAS (NF) =K
ELSE
k=MAX
ENDIF

70 CONTINUE
CREW DUTY DAYS
Ji=ENDDAY{S(J,4))
DO 100 k=J1-12,J1
IF ((BCH(J,1>+1200).LT.SCH(K,2)) THEN
NF=NF+1
FEAS (NF) =K
ENDIF

100 CONTINUE
CREW NIGHTS
IF(S(J,4).ER.4) GOTO 130
DO 110 K=J1+1,J1+13
IF((SCH(J,3)+1200).6GT.SCH(K, 1)) THEN
NF=NF+1
FEAS (NF) =k
ELSE
k=Jd1+13
ENDIF

110 CONTINUE

130 CONTINUE

WRITE(7,” (1X,15)°) NF

DO 135 1=1,35,5

WRITE(7,1120) (FPOINT(I+J),Jd=0,4)
1120 FORMAT (1X,515)
135 CONTINUE

DO 138 I=1,NF,5

WRITE(7,1130) (FEAS(I+J),J=0,4)
1130 FORMAT(1X,5I5)
138 CONTINUE

STOP
END
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THIS SUBROUTINE DEVELOPS THE ARC MATRIX
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SUBROUTINE ARCMAT (NFLT,NPIL,ACC, AVL,RER,FC,
*T,NE, SCH, S,P,C)

INTEGER¥2 NFLT,NPIL,ACC(30,1),C(30,1)
INTEGERX2 AVL (30,10,1) ,REQ(3, 1) ,NE (1)
INTEGER%2 ED,U,5(150,1),SCH(150,1),P(30,1)
CHARACTER%¥4 FC(30,1),T(150,1)

INTEGER*2 DAY1,DAY2,1,Jd,K1,T1,T2,BTIME,ETIME
INTEGER¥4 BIG

DATA BRIG/3200/

DO 150 I=1,NPIL+1

DO 140 J=1,NFLT+NPIL
€C(1,J)=3200

CONT INUE

CONTINUE

DO 250 J=1,NFLT
DAY1=(S(J,4)~1) %2400

SCH(J, 1)=({(S(J,2)=2) %¥100) +DAY1+5(J, )
SCH(J, 3)=((S(J,2)+3) ¥100) +DAY1+8(J, 3)
SCH(J, 2)=((S(J,2)+1)%100) +DAY1

ED=G (J,3) +30

IF(ED .GE. 60) THEN

ED=ED-40

SCH(J,2)=SCH(J,2) +100

ENDIF

SCH (J,2)=SCH(J,2) +ED

IF(T {0, 1).Ea. "ACTY") THEN
Ti=2

ELSEIF(T(J,1).EQ.  DACT*) THEN
T1=3

ELSEIF(T(J,1).EQ. DART") THEN
T1=4

ELSEIF(T{(J, 1) .ED.*NINT?) THEN
T1=5

ELSEIF(T(J,1).EQ. DINT?) THEN
Ti=b

ELSEIF(T(J,1).EQ. INST®) THEN
T1=7

ELSEIF(T(J,1).EQ. "AARD*) THEN
Ti=8

ELSE

Ti1=9

ENDIF
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& DO 230 I=1,NPIL
A U=1 :
IF ((PC(I,1).EQ.°WB”) .AND. (T(J,2) .E@. *FL’)) GOTO 230

. DO 200 Ki=1,NE(I) -
: ' DAY2=(AVL (I,K1,1)~1) %2400 '

BTIME=DAY2+AVL (I,K1,2)
ETIME=( {(AVL(I,K1,3)-1)%X2400) +AVL (I ,K1,4)
IF ((ETIME.GT.SCH(J,1)).AND. (BTIME.LT.SCH(J,3))) THEN
U=0
Ki=NE(I)
ENDIF

. 200 CONTINUE

IF (U .ER. 1) THEN
IF (PC(I,2).EQ.’N”) THEN
T2=1
ELSEIF (PC(I,2).EQ.’E’) THEN
T2=2
ELSE
T2=3
ENDIF
IF ((REQ(T2,T1).ER.0) .AND. (T2.NE.3)) THEN
C(1,J)=BIG .
ELSEIF ( (RE@(T2,T1).EQ.0).AND. (T2,EQ.3)) THEN
C(1,J)=(3%(ACC(I,1)%100) /REQ(T2,1))+5
 ELSE
C(I,J)=((ACC(I,T1)%100) /REQ(T2,T1))+5
ENDIF
IF((PC/T,1).EQ."FL*) .AND. (T (.1,2V.EQ. "WG’))
X C(I,J)=C(I,J)%2
ENDIF
230 CONTINUE
250 CONTINUE

DO 260 I=1,NPIL

TR s P - Dk 4

: C(NPIL+1 ,NFLT+I)=((ACC(I,1)%100)/REQ(T2,1))+5
: C(I,NFLT+I)=0

: 260 CONTINUE

i RETURN

" END .

e

e
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[ DAY=0
g N=1

N 40 CONTINUE

2 DAY=DAY+1

N WRITE(4,1100) DAY
=Y 1100 FORMAT(?1?,’DAY *,12)

PER=0

[ ¥l FLT=C’
W 50 CONTIMUE
e PER=PER+1

e WRITE(4,1110) PER

™ 1110 FORMAT(?0®,” PERIOD *,12)
0 &0 CONTINUE
. FLT=FLT+1

o WRITE(4,1120) FLT

o 1120 FORMAT(’0?,*FLIGHT®,12)

- WRITE(4,1130) TYPE(N)

* 1130 FORMAT (7 +7,2X,A5)
N WRITE(4,1140) FLTN(N,2)

i 1140 FORMAT (7 +° 2%, IS

3 70 CONTINUE
3 WRITE(4,1150) PNAME (X (N))

e 1150 FORMAT (" +7,2X,A10)

: IF(N.EQ.NFLT) GOTO 80
§ =N+ 1

Y&l IF(FLTN(N~-1,3).EQ.FLTN(N,3)) GOTO SO
& IF(FLTN(N-1,4).ER.FLTN(N,4)) GOTO &0
v IF(FLTN(N-1,5).EQ.FLTN(N,5)) 60TO 7
S GOTO 40 ‘
3 80 CONTINUE
STOF '

.- END

.
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C.2 Optimizatioun Program

FROGRAM SOLUTM

INTEGER%4
INTEGERY4
INTEGER%2
INTEGER%2
INTEGER%2
INTEGERXZ2
INTEGER X2
INTEGERY4
INTEGERXZ
INTEGER%2
INTEGER%2
INTEGERXZ2
INTEGER¥Z2

LR,LESTAR, RIG,NEG,C{10,35) ,C1 (10, 35)

R1(10),K1(35) ,R2(35) ,M(3)

NPIL,NFLT,ITER, TAG, I,J,K,KK, K2, K3, K4
po,Db1,D2,S0,52,F,P1,M0,M1,8,X0,R

S(10,2) ,A(10,35)

D(35,2),R3(35) ,LVAR(2)

XSTAR (45, 2) , XANDY (45,2) ,51 (45,2),Y(45,2)

FJ(7) , SUMPJ, PIMAX, COST, MCOST

FFEAS, BRANCH, FLAG, FFLAG, NEWMAX

NV, L,LV,PVAR(2),8IP(7,7)

XONE(7) ,FERS (7,7)  NOME, MSOL. (7)

TSOL (7) ,FM(7) , BFEAS(7) ,FPOINT (35)

F(80),LYR,CFROR{3,300) ,NF,START,END, QO

DATA RIG/I200/

DATA MNEG/-

10000/

DATA LEBSTAR/ 100000/
DATA LYR/O/
DATA FFEAS/ 1/

OPEM(1,FILE="COST.DAT" ,STATUS="0QLD")
TOUTPUT. DAT® ,STATUS="NEW")
*FEAS.DAT’ ,8TATUS="0LD")
OPEN(4,FILE="HRIP.DAT  ,5TATUS="NEW")

OPEN(2,FILE=
OPEN(3,FILE=

OPZN THE FILES

READ IN THE PROBLEM DATA

000 FORMAT(1X,A,IS)
READ (1, 1000) NPIL,NFLT

FORMAT (1X,215)
S2=NFIL_+1
Di=NFLT+NFIL

SO=0
DO=0
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DO 10 I=1,NPIL

READ(1,1010) S(I,1),D(NFLT+I, 1)
D(NFLT+I,2)=D(NFLT+I,1)
S(I,2)=8(I,1)

1010 FORMAT (1X,215)

10 CONTINUE
READ(1,1010) S(82,1),85(82,2)

DO 20 J=1,D1

READ (1, 1020,END=20) (C¢I,J),I=1,82)
1020 FORMAT(1X,8I5)

PO 18 k=1,82
CLik,J)=C(k,J)
18 CONTINUE
20 CONTINUE

DO 22 I=1,NFLT
D(I,1)=1
D(I,2)=1

22 COMTINUE

READ (3, " (1X,IS) ") NF

DO 25 I=1,35,5

READ (3, " (1X,SIT) ") (FFROINT(I+J) ,J=0,4)

25 CONTINUE
DO 30 I=1,NF,5

READ (3, 7 {(1X, 515 7 ,END=30) (F(I+I),J=0,4)

IO CONTINUE

INITIAL SOLUTION

no=
K=1
DO 70 I=1,NPIL
DO &0 J=I,NFLT,NFIL
81 (K, 1) =1
51 (K, 2)=J
D2=D2+1
ACILJ)=D(J,2)
S(I,2)=8(I,2)-D(J,2)
D(J,2)=0
F=k+1
60 CONT INUE
S1(K,1)=1
S1 (K, 2)=NFLT+I
D2=D2+1
ACT,NFLT+I)=5(I,2)
D(NFLT+I,2)=D(NFLT+I,2)~8(I,2)
S(I1,2)=0
K=k+1
70 CONTINUE

9]
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DO 80 J=NFLT+1,D1+D0O

S1(k,1)=82

S1(K,2)=1

D2=D2+1

A2, 1 =D(J,2)

§(82,2)=5(82,2)-D(J,2)
N DI, 2)=0

k=k+1

80 CONTINUE

TAG=0

START TRANSPORTATION ALGORITHM

CONTINUE
TAG=TAG+1

DUAL VARIARLE CALCULATION

§§
gE
g

ITER=0
COMT INUE
ITER=ITER+1
WRITE (4,1150) ITER
FORMAT (1X, " ITERATION® , IS)
DO 1160 I=1,D1+DO
K1 (I)=NEG
RZ (1) =10000
CONT INUE
DO 1190 I=1,82+50
R1(I)=NEG
CONTINUE

1140

1160

1150

R=1

k=1

R1(1)=0

K1(81(1,2))=C(S1(1,1),81(1,2))

GOTO 1240

R1(82)=0

DO 1200 I=D2,Di+2-52,-1

IF(S1(I,1).EQ.S2) THEN
K1(S1¢1,2))=C(51(1,1),81(I,2))
k=k+1
DO 1195 k=1,D2
IF(S1(K,2).EQ.81(I,2)) THEN

R=R+1
ENDIF
CONT INUE
ENDIF
CONT INUE

1195

1200
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1300

1490
1500

1502
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CONTINUE

I=1

CONT INUE

I=I+1

IF(K1(S1 (I ,2)).NE.NEG) GOTO 1300
IF(R1(S1{(I,1)).EQ.NEG) GOTO 1330
K1(81(1,2))=C(81(I,1),81(1,2))-R1(81(I,1))
K=k+1

CONTINUE

IF(R1(S1(1,1)).NE.NEG) GOTO 1330
R1(S1(I,1))=C(S1(1,1),81(I,2))-K1{(S1(1,2))
R=R+1

CONT INUE

IF(I.LT.D2) GOTO 1250

IF{(K.LT.D1+DO) GOTO 1240

IF(R.LT.S52+50) GOTO 1240

FIND A VARIABLE TOQ PIVOT ON

I=1
M{1)=0
DO 1500 R=1,82+50
DO 1490 kK=1,D1+DO
IF(R.NE.S1(I,1)) GOTO 1450
IF(E.NE.S1(I,2)) GOTO 1450
IFCIARLK) JEQR.O) . AND.
(R2UD) LOBT.C(RLEY-RI{R)-K1(K))) THEN
R3{(K) =R
ENDIF
I=1+1
GOTO 1490
CONT INUE
IFR2) .GT.C(R,K)-RL(RY K1 {}1) THEN
RZ(K) =R
ENDIF
IF(M(1).LT.C(R,E)-RI(RY-K1(K)) GOTO 1490
M{1)=C (R, K)-R1 (R)-K1{E)
M(2) =R
M{3) =k
CONT INUE
CONT INUE
IF(M(1).GE.Q) GOTO 2790
WRITE(4,1502) ITER,M(2),M{3)
FORMAT (11X, " ITER®, IS, "PIVOT ,215)

FIND A CLOSED PATH FROM R TO K

Y(1,1)=M(2)

Y(1,2)=M(3)

=1

IF(M(2).ERQ.82+530) GOTO 1960
MO=Y (G, 1)

Mi=1
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1610

1620

1660

1670

8080

1720

1780

1370

1890

ROW SEARCH

CONTINUE

I=0

CONT INUE

I=I+1

IF(S1(1,1).6T.M0) GOTO 1670

IF(S1(I,1).LT.MO) GOTO 1660

IF(51(1,2).GE.M1) GOTO 1720

CONT INUE

IF(I.LT.D2) GOTO 1620

CONT INUE

IF(Q.NE. 1) GOTO 1830

WRITE (4, B080)

FORMAT (1X,  DEGENERATE MATRIX™)

STOF *DEGEN’

CHECK IF ALREADY USED

CONT INUE

X0=0

DO 1780 J=1,0
IF(S1(I,1).NE.Y(J, 1)) BOTO 1780
IF(S1(I,2).NE.Y(J,2)) GOTO 1780
Xo=1

CONT INUE

IF(X0.EQ.0) GOTO 1890

M1=S1(I,2)+1

IF(Mi.LT.D1+D0O) GOTD 1660

CAMT INUE
P=Y(0,2)

Pl=Y (@, 1) +1

Y(2,1)=0

Y(R,2)=0

2=0-1

BOTO 2000

CONT INUE

0=0+1

YR, 1)=81(I,1)
Y(Q,2)=51(1,2)
IF(R.LE.2) GOTO 1940
IF(Y(©,2).EQ.M(3)) GOTO 2340
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19460

2000

2010

2030

2040

2130

COLUMN SEARCH

CONTINUE

P=Y (B, 2)

Pi=1

CONT INUE

K=0

CONT INUE

K=k +1

IF(S1(K,1).LT.F1) BOTO 2040
CONT INUE

IF(S1(K,2).EQ.P) GOTO 2120
CONT INUE

IF(K.LT.D2) GOTO 2010

CONT INUE

MO=Y (@, 1)

Mi=Y (@), ) +1

YR, 1)=0

Y(R,2)=0

0=0-1

GOTO 1610

CHECK FOR UNIGUE PATH SOUARE

CONT INUE

XO=0

DO 2180 J=1,0
IF(S1(K,1).NE.Y(J, 1)) GOTO 2180
IF(S1(K,2) . NE.Y{J,2)) BOTO 2180
X0=1

CONT INUE

IF(X0.EQ.0) GOTO 2250

P1=81(k, 1) +1

IF(P1.LE.S2+50) GOTO 2040

GOTO 2050

ADD STONE SQUARE TO PATH

CONTINUE

@=0+1

YQ,1)=81({kK,1)
Y(Q,2)=81 (K2
IF(e.LE.2) GOTO 2300
IF(Y(@, 1).EQ.M{(2)) BOTO 2340
CONTINUE

FP1=Y(Q,1)+1

MO=Y (@, 1)

Mi=1

G0TO 1610
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FIND THE LEAST FLOW CHANGE

2340 CONTINUE

XO=A(Y(2,1),Y(2,2))

DO 2390 K=4,0,2
IF(XO.LE.ACY (K, 1),Y(K,2))) GOTD 2390
XO=A(Y (K, 1),Y(K,2))

2390 CONTINUE

ADD AND SURTRACT X0 ALONG CLOSED PATH

2410 CONTINUE
P=0
DO 2450 K=1,0,2
ACY (K, 1), Y (K, 2) ) =AY (K, 1), Y (K, 2)) +X0
2450 CONTINUE
DO 2630 K=2,0,2
ALY (K, 1), Y (K. 2)) =AY (K, 1), Y (K, 2) ) —XO
IF(ACY (K, 1), Y (K, 2)).6T.0) GOTD 2630
IF (X0.FQ.0) GOTO 2500
IF (Y (K,2) .GT.NFLT) .AND. (Y (K, 1).LT.S2)) GOTO 2630
2500 CONT INUE

I=0
P=p+1
IF(P.BT.1) GOTO 2630
530 CONT INUE
I=I+1
IF(S1(I,1).NE.Y(K,1)) GOTO 2530
IF(S1(I,2).NE.Y(K,2)) GOTO 2530
DRITE (4, B050) V(K,1),Y(K,2) ,¥)
BOS0 FORMAT (1X, "PIVOT OUT®,215,7 FLOW=",1S)
DO 2590 J=1,D2
61(J,1)=51(J+1,1)
51(J,2)=51 (J+1,2)
2590 COMNT INUE
8§1(D2, 1)=0
S1(D2,2)=0
D2=D2~1
2630 CONTINUE

INSERT A NEW STONE SQUARE

I=0
2660 CONTINUE
I=1+1
IF(Y{(1,1).GBT.S1(I, 1)) GOTQ 26&0
IF(Y(1l,1).LT.S1(I,1)) GOTO 2700
IF(Y(1,2).GT.81(1,2)) GOTO 2660
2700 CONTINUE
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{ DO 2730 J=D2,1,-1

i S1(J+1,1)=81(J, 1)
: S1(J+1,2)=81(J,2)

" 2730 CONTINUE

A S1(1,1)=Y(1,1)

‘ S1(1,2)=Y(1,2)

D2=D2+1

- 60TO 1140

S 2790 CONTINUE

o IF(M(1).6E.0) THEN
= WRITE (4,8120)

: 8120 FORMAT (1X, *SOLUTION IS OPTIMAL®)

- ENDIF

OFPTIMAL SOLUTION, FIND LE

LB=0
DO 2800 I=1,D2
IF(C(S1(1,1),51(1,2)).LE.0) THEN 1
. COST=C1(51¢1,1),S51(1,2)) |
gl ELSE
o COST=C(S1¢(I,1),51(I,2))
ENDIF
LB=LB+(COSTXA(S1(I,1),81(I,2)))
2800 CONTINUE
DO 2805 I=1,NFIL i
LB=LE+((S¢I,1)-D(NFLT+I, 1)) %C1 (I, NFLT+I)) j
2805 CONTINUE |
WRITE(4,8100) TAG, ITER-1,LE
6100 FORMAT(1X, TAG",15," ITER,IS," LEB=",I10)
X IF (LE,GT.RIG+100) GOTO 300
N IF(TAG.GT.40) GOTO 350

] THIS SEGMENT STARTS THE SIP SOLUTION PROCEDURE

NEWMAX=0
FFLAG=0
I=0
410 CONTINUE
I=I+1
NONE=0
DO 415 k=1,7
XONE (F) =0
415 CONTINUE
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420

430
440

450

4460

470

X

J=0
CONTINUE

J=J+1

IF(S1(J,1).E@.I) THEN

XANDY (J, 1) =51(J, 1)

XANDY (J, 2) =51 (J,2)

IF((A(S1(J,1),581(J,2)).GT.0).AND.
(S1(J3,2).LE.NFLT)) THEN
NONE=NONE+1
XONE (NONE) =XANDY (J, 2)

ENDIF

ENDIF

IF(S1(J,1).LE.I) GOTO 420

WRITE(4," (1X,7IS) ") (XONE(KK) ,KK=1,7)

FILL THE SIP MATRIX

WRITE (4,9000) 'START SIP GEN’,I
DO 440 KkK=1,7
MSOL (KK) =0
DO 430 K4=1,7
SIP (KK, K4)=0
CONT INUE
CONTINUE

FLAG=0D
KE=0Q
CONT INUE
Kk=KE+1
START=FFPOINT (XONE (KK))
END=FFOINT (XONE (ki) +1)
IF(KK.LTONONE)Y THENM
K 4=KK
CONTINUE
K4=K4+1
DO 470 K3=8TART+1,END-1
IF(F(3) .EQ.XONE (K4) ) THEN
FFLAG=1
FLAG=1
SIP(KK,K4)=1
ENDIF
CONT INUE
IF(K4.LT.NONE) GOTO 460
ENDIF
SIP (KK, ,kKK)=1
WRITE(4," {1X,7I5) ") (SIP(KK,J)J=1,7)
IF(KK.LT.NONE) GOTQ 450
WRITE (4,9000) "END SIF MATRIX GEN™,I
WRITE (4,9000) FLAG=",FLAG
IF(FLAG.EQ.0) GOTO 725




FIND THE PJ°S

PIMAX==3
WRITE(4,92000) "START SIP SOLUTION? ,I
MCOST=-5
SUMPJ=0
NV=NONE
DO 500 J=1,NV
K2=X0ONE (J)
K3=R3I(K2)
PI (I =(CKI, K2)-R1 (K3) K1 (E2))-(C(I,K2)-R1(I) K1 (K2))
SUMPJI=8UMPJI+PJ (J)
S00 CONTINUE
INITIALIZE FEAS
DO 520 K=1,NV
DO S10 J=1,NV
FEAS (K, d)=0
S10 CONT INUE
520 CONTINUE
FILL IN FEARS
DO 550 J=1,NV
J= O
525 CONTINUE
J=Jd+1
b0 340 L=1,NV \
IF(SIP(L,Jd).ER.1) THEN
DO 530 K=1,NV
IF(SIP(L,K).EQ.1) THEN
FEAS(J,K)=1

ENDIF

530 CONTINUE
ENDIF
T40 TONTIMUE

IF(I.LT.NV) GOTO 525
550 CONTINUE

START THE BRANCHING PROCESS

J=0
555 CONTINUE
J=J+1
DO 560 kK=1,NV
TSOL (k) =0
560 CONTINUE
TSOL (J)=J
COST=FJ (I
LV=J
FLAG=0
DO S70 KE=1,NV
BFEAS (K) =FEAS (J, k)
IF (BFEAS (k) .EQ.0O) THEN
FLAG=1
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ENDIF

S70 CONT INUE
IF(FLAG.ER. Q) GOTO &00

BRANCH=G

FORWARD BRANCH

575 CONT INUE
k=LY
S80 CONTINUE
K=K+1
IF (RFEAS (K) LER.0) THEN
BRANCH=1
TSOL (K) =K
COST=COST+PJ (K)
LV=K
FLAG=0
DO 590 Ka=k,NV
BFEAS (K4) =BFEAS (K4) +FEAS (K, K4)
IF (RFEAS (K4) .EQ.0) THEN
FLAG=1
ENDIF
590 CONTINUE
=NV
ENDIF
IF(K.LT.NV) GOTQ 580
IF ( (BRANCH.EB. ) .OR. (FLAG.EQ. ) GOTO &00
BRANCH=0
GOTO 575

BRANCH FATHOMED, CHECK FOR OFPTIMUM

&00 CONT INUE
IF (COST.GT.MODSY, THEN
MCOST=COST
DO 610 K=1,NV
IF (TSOL (K).BT.0) THEN
MSOL. (K) =XDONE (K)
ELSE
MSOL. (K) =0
ENDIF
610 CONT INUE
ENDIF

BACEWARD BRANCH

DO 620 K=LV+1,NV
BFEAS (K) =BFEAS (K) ~FEAS (LV, )
620 CONT INUE
675 CONT INUE
IF(TSOL (LV) . NE.O) GOTO &30
LV=LVY~1
IF(LV.LE.0) GOTO 670
BOTO 625
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670

620

700

705

706

707

CONT INUE
IF(LV.ER.J) BOTO 670
TSOL (LV)=0
CosT=COST~PJ (LV)
IF(LV.GE.NV) BGOTD 600
BRANCH=0
6ATO 575

CONTINUE

IF(J.LT.NY) BOTO 555

WE HAVE THE OPTIMAL SOLUTION FOR THIS 1

WRITE (4,9000) "OPTIMUM FOR SIP I
WRITE(4,” (1X,7I5)7) (MSOL (KK),KK=1,7)
J=0
CONT INUE
J=J+1
IF(MSOL (J) .ER. O) THEN
FLAG=0
kKK=0
CONTINUE
KE=KK+1
IF({(S1(KK,1).EQ. I).AND, (S1 (K, 2).ER. XONE (1))} THEN
XANDY (Kk, 1) =R3I (S1 (k¥ ,2))
XANDY (KK, 2) =81 (KK, 2)
FLAG=1
ENDIF
IF(FLAG.EDR. 1) GOTOQ 705
IF(KK.LT.D2) GOTO 700
CONT INUE
ENDIF
IF(J.LE. MV) GOTO 690

CALCULATE BOUND AND SEFPARATION VARIARLE

LE=LB+SUMPJ-MCOST
DO 710 K=1,NV
FLAG=0
IF (MSOL (K) .E@.0) 6OTO 710
IF (K.EQ.NV) THEN
DO 706 J=1,NV
IF (FEAS (J,K).GT.0) THEN
FLAG=FLAG+1
ENDIF
CONTINUE
ELSE
DO 707 J=1,NV
IF (FEAS(K,J) .GT.0) THEN
FLAG=FLAG+1
ENDIF
CONTINUE
ENDIF
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IF(FLAG.LE. 1) BGOTO 710
J=0

708 CONT INUE
J=J+1
IF((CPROR(1,J3).E@.I).AND.

X (CPROB(2,J) .EQ. XONE(K))} GOTO 710
IF(J.LT.LYR) GOTO 708
IF(PIMAX.LT.PJ(K)) THEN

PIMAX=PJ (K)
PVAR(1) =]
PVAR (2) =XONE (K)
NEWMAX=1
ENDIF
710 CONTINUE
725 CONTINUE ’
WRITE(4,8200) 1 :
8200 FORMAT(1X, "PILOT’, I3, FATHOMED")
IF(I.LT.NPIL) GOTO 410
IF (FFLAG.EG.0) GOTO 280
IF (NEWMAX.ER.Q) GOTO 300
IF((LVAR (1) .ER.PVAR (1)) .AMD.
3 (LVAR(2) .EQ.PVAR{2))) GOTO 300
LVAR (1) =PVAR (1)
LVAR (1) =PVAR(2)

TEST TO SEE IF XANDY IS FEASIBLE

FFLAG=0
I=0
K=0
210 CONTINUE
I=1+1
DO 215 R=1,7
FM(R) =0
215 CONTINUE
DO 220 J=1,D2 ;
IF ( (XANDY (J, 1) .E@. I) . AND. (XANDY (J,2) .LE.NFLT)) THEN’
K=K+1
FM(K) =XANDY (J, 2)
ENDIF
220 CONTINUE

Kk=0

230 CONTINUE
kk=KK+1
START=FPOINT (FM(KK))
END=FPOINT (FM(K¥) +1)
IF(KK.LT.K) THEN
k.4=Kk

240 CONTINUE
t4=k4+1
K3=8START
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CONT INUE
K3=K3+1
IF(FIKZ) CEQ.FM({K4)) THEN

FFLAG=1

Kk =k

K3=END-1

K=K
ENDIF
IF(K3.LT.END-1) GOTO 250
IF(K4.LT.K) GOTO 240
ENDIF
IF(KK.LT.E) GOTO 230 :
IF((I.LT.NRPIL)Y,AND. (FFLAG.ER.Q)) GOTO 210
WRITE(4,2000) FFLAG XANDY=",FFLAG
IF(FFLAG.ER. 1) BOTO 320
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CHECK TO SEE IF XANDY IS OPTIMAL TO BIP

IF(LE.LT.LESTAR) THEN
LESTAR=LE
po 270 J=1,D2
XSTAR(J, 1) =XANDY {J, 1/
XSTAR (I, 2)=XANDY (3, 2)
270 COMTINUE
ENDIF
IF(FFEARS.EQ. 1) GOTO 350
60OTO 300

CHECK IF S1 IS OFTIMAL

280 CONTIMUE
IFILR.LT.LBESTAR)Y THEN
LESTAR=LR
DO 290 J=1,D2
X8TAR(J, 1)=681(J, 1)
XSTAR(J,2)=81 (J,2)
290 CONT INUE
ENDIF
IF(FFEAS.ED. 1) GOTO 350

E OVERALL ERRANCH AND ROUND CONTROL

ELIMINATE VARIABLES

P

300 CONTINUE

WRITE(4,8030) TAG
8030 FORMAT(1X, "TAG",IS," ELIMINATE VARS®)
310 CONTINUE

Lslewt s

120

F';’L‘<(u'.".‘ et

N PN L Sl UL P A S - AU PO U S RN ‘



&
:
.
:
L
A
"
;
)

IF(LYR.E®.0) GOTO 350
FLAG=0
J=CFROB(1,LYR)
K=CPROE {2, LYR)
IF (CPROB(3,LYR) .ER.0) THEN
C (T, K)=C1 (J, )
CPROE (1,LYR) =0
CPROE (2, LYR) =0

LYR=LYR~1
FLAG=1
ELSE

CI,K)=RIG
CFROB(3,LYR)=0
ENDIF
IF(FLAG.EG. 1) GOTO Z10
G070 90

ADD NEW VARIABLES

£
r
<

CONT INUE
WRITE (4,8040) TAG,PVAR(1) ,PVAR(2)
8040 FORMAT(1X,"TAG’,I5,” ADD VAR®,215)
LYR=LYR+1 .
CPROE (1,LYR)=FYAR (1)
CPROE (2, LYR) =FVAR (2)
CPROE (3, LYR) =1
C(PVAR (1) ,PVAR (2)) ==3200
ADD ZERO VARIABLES
IF(FVAR(2).LT.11) THEN
CO=FVAR (2) -1
ELSE
ED=10
ENDIF
DO 327 K=PVAR(2)-00,PVAR(2) -1
DO 323 J=FPOINT(K)+1,FPOINT (K+1)~1
IF (F(J).EQ.PVAR(2)) THEN
LYR=LYR+1
CPROE (1,LYR) =PVAR (1)
CPROE (2, LYR) =K
CPROE (3, LYR) =0
C(PVAR (1) ,K)=RIG
ENDIF
323 CONT INUE
327 CONTINUE




.............

START=FFOINT (FVAR(2))
END=FFOINT (FVAR(Z2) +1)
PO 330 J=8TART+1,END-1
I=PVAR (1)
LYR=LYR+1
CPROR(1,LYR)=1
CPROEB(2,LYR)=F (J)
CPROB(3,LYR)=0
C(I,F{(I)=RIG
3Z0 CONTINUE
GOTO0 90

i
OFTIMAL SOLUTION IS REACHED ‘
|

50 CONTINUE
DO 360 1=1,D2
IF ((A(XSTAR(I, 1) ,XSTAR(I,2) ) .GT.0) . AND.
X (XSTAR(I,2).LE.NFLT)) THEN
WRITE(2,” (1X,3110)°) XSTAR(I,1),XSTAR(I.2),
% AXSTAR(I, 1), XSTAR(I,2))
ENDIF
40 CONTINUE
LE=0
DO 370 I=1,D?
LE=LE+ (Ci (XSTAR(I, 1) ,XSTAR(T,2) ) ¥A(XSTAR(I, 1),
X XSTAR(L[,2));
=70 CONTINUE
WRITE (2,8000) LESTAR
8GO0 FORMAT(1X,110,” = LBSTAR")
WRITE(2,8010) TAG
8010 FORMAT (1X,110,7 = NO. OF ITERATIONS®)
STOP
END
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C.3 Program to Format Schedule

PROGRAM OQOUTPUT

INTEGERX2 FIL (300,2) ,FLTN(150,5) ,NUMF, X (150)
INTEGER%2 FLAG,NPIL,NFLT,PER,DAY,FLT,N
CHARACTERY4 TYPE (150) , PNAME (35)

OPEN(1,FILE="0UTPUT.DAT® ,STATUS="0LD")
OFEN(2,FILE="PILOT.DAT’ ,STATUS="0LD")
OPEN(3,FILE="SCHED.DAT® ,STATUS="0LD")
OPEN(4,FILE="BYNAME.DAT" , STATUS="NEW")

READ (2, 1000) NPIL
1000 FORMAT(//15)
READ (X, " (//15)7) NFLT

DO 10 I=1.NPIL f
READ (2, 1020) PNAME (D)
1020 FORMAT (A10)
10 CONTINUE

DO 20 J=1,NFLT
READ (3, 1030) TYPE(J), (FLTN(J,K) ,K=1,5)

1030 FORMAT (3X,AS,5X,515)
20 CONTINUE e

PO F0 E=1,WNFLT
READ(1,1040) FIL(k 1) FIL(K,2)
1040 FORMAT (1%,2110)
30 CONTINUE

FLT=0
35S CONTINUE
FLT=FLT+1
K=0
FLAG=0
CONT INUE
K=K+1
IF(FIL(K,2).EQ.FLT) THEN
X(FLT)=FIL(K,1)
FLAG=1
ENDIF
IF(FLAG.E@. 1) GOTO =
IF(K.LT.NFLT) GODTO =
IF(FLT.LT.NFLT) GOTO

2
~

5
7

-
- 5
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